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ABSTRACT

A large variety of physical and chemical systems are characterized by the

repetition of identical units. The periodic structure of these systems allow their

handling by similar mathematical methods. It is the purpose of this thesis to

present certain techniques for the evaluation of analytic functions of matrices

associated with such systems. The method consists of Poisson-type transforma-

tions of finite sums, which lead to rapidly converging expressions for the problems

considered. Examples related to lattice dynamics and molecular orbital theory

are discussed. Certain restricted sums of perturbation theory are calculated

exactly by a method of independent interest. An extensive list of matrices arising

from diverse periodic systems, together with their eigenvalues and eigenvectors,

is presented. This extends and generalizes results in the literature.
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IN TRODUC TION

There are a large variety of phenomena in physics and theoretical chemistry

which are characterized by the repetition of identical units. This type of model

arises in the study of lattice structure as in lattice dynamics, exciton theory,

polymer chains and other similar situations. Many of the equations which appear

in the analysis of such periodic systems have similar features, and allow sim-

plifications due to the periodicities involved.

The first one to call attention to the class of mathematical problems which

arise from periodic phenomena was Rutherford [1,2], who calculated the eigen-

vectors and eigenvalues of particular continuant and circulant matrices useful

mainly in the solution of one dimensional problems. Some of this work was con-

tinued in a mathematical context by Egervary [3]. Of course, particular problems

involving periodic structures have been solved from Bernouilli onwards. A good

deal of this work is summarized in the books by Brillouin [4] and by Parodi and

Brillouin [5 ]. Recently there has been some interest in this genre of problems,

as it arises from the analysis of molecular systems, [6,7].

It is the purpose of this thesis to present certain techniques for calculating

analytic functions of circulant and continuant matrices, appropriate to the solu-

tion of one- and higher-dimensional problems. In doing so we shall also extend

some of the results of Rutherford, particularly in regards to matrices character-

istic of multi-atomic problems and lattices with defects.



in Chapter I we introduce the basic equations describing the vibrational

motion of crystal lattices in the harmonic approximation and the matrices as-

sociated with particular atomic configurations are derived. These are a good

example of the type of problem arising in studies of the physics of periodic units.

The main model employed is that of a rectangular lattice with a variety of boundary

conditions. The ground work neededfor the elaboration of these systems can be

useful for the treatment of models with other symmetries. The statistical me-

chanics of lattices is shownto lead naturally to the concept of function of a

matrix andthe needfor an explicit evaluation of its elements.

Chapter II describes problems selected from several fields (theoretical

chemistry, molecular physics, etc.) which give rise to types of matrices similar

to those discussed in Chapter I.

Chapter HI presents a technique for calculating analytic functions of the

particular matrices introduced in the previous chapters. The task at handis

shownto be the evaluation of certain finite sums. This is accomplished by a

summation method somewhatsimilar to the Poisson sum formula. The formalism

thus developedis then applied to several examples in one-, two- andthree-

dimensions which lead to specific analytic results. The method provides a scheme

for numerical work in caseswhich are analytically intractable.

The systems dealt with in foregoing chapters possessedunperturbed perio-

dicities. Whenperturbations are introduced (such as isotopic impurities, holes,

etc.) the treatment has to be modified. Montroll and coworkers have shown [8,9]

how to evaluate sums of analytic functions of the unknown eigenfrequencies of

such systems by using matric Green's functions of the unperturbed systems.

While the same approachcould be adoptedhere by employing the results of

Chapter HI, onecan instead find approximate eigenfrequencies and then evaluate

the appropriate sumsof these. This procedure is illustrated in Chapter IV



where clgsed form expressions are foundfor the restricted sums of ordinary

perturbation theory, by using a methodof some intrinsic interest.

In order to increase the coherenceof presentation someof the lengthier

derivations have beenrelegated to appendices. In addition, a special appendix is

devotedto the listing of matrices which appear most frequently in applications.

This appendix contains generalizations and extensions of RutherfordVswork

[1,2] and each matrix listed in it is accompanied,whenever possible, by its

eigenvalues, eigenvectors andthe closed form of its characteristic polynomial.



CHAPTER I

DYNAMICS OF A CRYSTAL LATTICE

A solid is by definition a group of atoms arranged in a regular array (lattice),

which perform small oscillations about their equilibrium positions. It is usually

assumed that the forces acting on each particle in the lattice can be derived from

a potential.

In most cases the exact form of this potential is not known and arbitrary

constants have to be introduced in the theory. On the other hand, stability con-

siderations show that the potential energy of the lattice can be expanded in a

Taylor series about the equilibrium positions, at least for temperatures below

those at which a state transition takes place. If only the first non-zero term is

retained in this expansion, the potential energy becomes a quadratic form in

the displacements of the atoms. This procedure is known as the harmonic approxi-

mation, the nomenclature referring to the fact that here the solid is regarded as

a set of coupled harmonic oscillators. The harmonic approximation describes

adequately many of the vibrational properties of a solid although it cannot explain

characteristics such as thermal expansion, temperature variation of the elastic

constants, etc. For the treatment of these phenomena higher order terms in the

series expansion have to be included in the potential energy. In this work all the

systems considered will be treated in the harmonic approximation.
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The general theory of lattice vibrations is discussed in detail in several

books [10, 11] ; here only an outline of the theory will be given and specialization

will be made to those models for which the methods of calculation described in

Chapter III apply.

To write downthe Hamiltonian for the lattice we assumefor definiteness that

there are N unit cells each containing n particles. We define r°(_)and r(_)

to be the position vector at equilibrium and the actual positionveetor, respectively,

of the x-th particle in the _-th unit cell, both related to a suitable origin of co-

ordinates. Thevectors r°(_) represent the lattice sites and can bewritten

also in the form

r = r0(_) + r0(X) (1)
K

with

r°(_) = _I al + _2 a2 + _3 a3 (2)

where the a. are three noncoplanar vectors called the primitive translation
J

vectors of the crystal and the _. are three integers, positive, negative or zero.
J

The position vector of the x-th particle in the unit cell with respect to some

origin there, is denoted above by r ° (x). All crystals the unit cells of which

contain only one particle are called Bravais crystals - other crystals are called

nonprimitiv e.

In the harmonic approximation the potential energy of the lattice is given by

o:o0+ °10 (

+_ 4,,×
_a ,E I

6
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The zero subscript above denotes evaluation at the appropriate equilibrium

position. By definition

If we define the displacements from equilibrium by

and the (a, fl ) component of the tensor We I0 by

(4)

(5)

then the potential energy can be written as follows:

This is a quadratic surface in 3Nn dimensions and one can investigate its in-

variance properties under a variety of transformations. This will not be done

here as it is excellently presented in [ 11 ]. We want to remark that while

important, these invariance properties pertain mostly to infinite lattices and

lattices with boundaries which have been removed by use of the Born-von Karman

cyclic constraints.

The coefficient of _/__ (x_ _:)is the force exerted in the a-direction on the par-

ticle at r°(_) when the particle at r°(_')×, is displaced a unit distance in the

fl-direction, and from eq. (6) we see that
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(s)

If the potential energy consists only of two-body interactions, with each pair

of particles interacting via a potential function ¢××, (r) which depends only on

the magnitude of their separation, the atomic force constants will take the form:

×' = - bx_ bx------_¢××'
(9)

The number of particle species is at most equal to the number of particles

in the unit cell. Therefore M×, × = 1, . . . , n, will denote the mass of the × -th

particle in the unit cell, and we can write the equations of motion

(io)

There are two different approaches usually adopted for solving these equations:

1. The Plane-Wave Method

If in eqs.(10) one proceeds to the limit of an elastic continuum, one obtains

a wave equation for the displacement vector of an arbitrary point in the medium.

An expansion of the displacement in plane waves of the type exp {2 _ik'r -iwt }

leads in most cases to a solution of the problem, the amplitudes being determined

from the boundary conditions.

This treatment of the wave equation suggests a similar procedure for the

discrete crystal lattice. If we make the substitution

u(:) 1
= --va(x) exp [-loot + 2_i k" r°(Z)] (11)

8



where r ° (_) is as in eq. (2), k is a three-dimensional vector to be subsequently

determined from boundary conditions, and v_(×) is independent of _, we find

where

Jva()c)-- _, D_/_ (×k×,)v/3(_, ) (12)

]('/3

exp {2_ik. [r°(_ ') -r°(_)]} (13)

If one can at this point make the quantities D defined in eq. (13) independent

of 4, then a considerable reduction of the problem is achieved. To this end specific

assumptions about the second order force constants have to be made: either the

lattice is infinite and its periodicity insures invariance under rigid body trans-

lations produced by a lattice vector r ° (Z) , or it is finite with periodic boundary

conditions. Both cases lead to the relations

i.e., the atomic force constants depend only on the difference Z - 4'.

This beingthe case the superscript _ can be suppressed in eqs. (12) and (13).

Thus eq. (12) can be rewritten

with

/1_ \
Cd 2

va(E) = /2 , DaB.._I(×L') v_
(15)

×'/_

k, = q>_ g_' exp [-2_ri k. r°(_)]
(16)



Therefore there are only 3n equations instead of 3Nn or an infinite number of

them. The set of equations (15) will have a solution if the determinant of the co-

efficients wiii vanish

ID_z (×kx,)-w2 _Z S××' I =0 (17)

It is easily seen from the definition (16) that the matrix of the coefficients D

is Hermitian. The 3n solutions o_2 (k) are then real and the stability of the lattice
J

requires that these be positive.

To a certain extent the reduction effected above is illusory since the vectors

k which satisfy the boundary conditions for a finite lattice have still to be found.

This brings us back to the original problem. For an infinite lattice the 3 r functions

o_2 (k) can be regarded as the branches of a multivalued function o_2(k_.
J

The plane-wave method is indispensable in all those cases for which the

normal mode frequencies cannot be explicitly found. Moreover it is the starting

point of the quantum-mechanical treatment of solids, scattering of waves and

particles, etc.

2. The Normal Mode Method

In this method the following substitution

is used in eq. (10) to yield

10

=0
(19)



The condition that the set of equations (19) have a nontrivial solution is

The roots of this equation are the normal mode frequencies of the crystal. The

3Nn x 3Nn symmetric matrix in eq. (20) is known as the dynamical matrix of the

system, usually denoted by A(cv 2) or simply A. The boundary conditions are

automatically introduced through the specific form of the dynamical matrix.

Generally, if the roots of eq. (20) cannot be found analytically, the numerical

solution is more complicated that that of the reduced eq. (17) and this approach

is not useful. But if one considers short-range interactions (i.e., interactions

between distant neighbors can be neglected) and certain simple boundary condi-

tions, there exist several models which possess explicit analytic solutions.

It is this latter aspect of the normal mode method which will be utilized

exclusively in the sequel. We wish to emphasize that the application of the plane

wave method to these soluble models, though possible, is much less convenient

than that of the present method.

Before we proceed to the actual models, a further question has to be answered:

how to connect the atomic force constants with the geometrical and physical struc-

ture of a given lattice. It readily appears that knowledge of the invariance proper-

ties of ¢ is not sufficient for this purpose. If we restrict the discussion to two-

body interactions, a more physical approach is through the forces acting between

pairs of particles. This approach has been used by Born [ 10 ] and subsequently

amplified by de Launay [ 12 ], whose treatment we follow.

Let _ ×, be the force exerted on the particle located at (_,_) by the

particle located at (_', _'). Then by definition

11



(21)

where _ is the 3 × 3 matrix with elements given by eq. (9), and we see that

is also a force density tensor possessing only 6 independent components.

The procedure of de Launay is essentially to write for ¢ a linear combination

of dyadics

(t ,22 ¢ =aEE + _ + a"q, 1
K I

where

and

_, t _" -- 0_, _#,

t, _, q--_, g, _ ×0

One of the three unit vectors, say e, is chosen as follows

r°(_'_ - r° (_)
\×'/ (23)

while the remaining two are taken to form with E a right-handed orthogonal

triad. There are not enough conditions to make the choice of these two unique

and therefore a certain degree of arbitrariness remains. Despite this fact, it

is not difficult to choose these vectors for actual models, as will be described

below.

12



The coefficients a and a ° , a" are known as the central force and non-central

force constants, respectively. These depend on the type of the two-body inter-

action and also on the separation distance - the constants will vary for different

neighbors even when the same type of interaction is involved.

In the following we present the equations of motion and the dynamical matrices

for several models of finite lattices in one, two, and three dimensions.

1.1 One-Dimensional Lattices

In this section we shall discuss finite linear chains and classify these according

to their symmetries and the boundary conditions imposed.

The model assumed is that of N particles M1 , M2 , .... MN arranged on a

line and constrained to vibrate longitudinally, as in Fig. 1. The equilibrium

positions x? obey the conditions
J

x ° -x?=a.; j =1,
j +1 .I J

M1 M2 MN

• . • , N- 1 (24)

Figure 1

where the a's denote the spacing constants of the linear lattice. If none of theJ

aj's coincide there will be N(N - 1)/2 independent force constants. This case

is of no interest here since no periodicity is involved. We consider below the

case where the two-body interactions are independent of the particle masses and

assume that the particles, at equilibrium, are equidistantly spaced. Then the

number of independent force constants reduces to N - 1. According to our model

the tensor (_ of eq. (22) reduces in this case to one constant a(_, _') since e e

becomes 1° Moreover the properties of the two-body interaction assumed lead to

force constants a with the property

13



a(_, _') =a(l_-_'l) -aj; j =1,..., N-1 (25)

In order to write down the dynamical matrix the boundary conditions have to

be explicitly introduced. This is done below.

1.1.1 Linear Chains with Free Ends

The forces acting on the two end particles M1

and (25) are respectively:

and M2, according to eqs. (21)

F 1 = _ aj (Uj +I - Ul)

j=l

FN _1 aN_ j (Uj -- U N )

j=l

(26)

Then the dynamical matrix is

1 - M1 °°2' - Ctl ' " " ' ' - CeN-I

"x I
\ I

-a , A -M oJ2, - i
, 1 2 2 _. t
I \ \ \ i

: ', '. ". -. I
I \ \ t

I \ \ _. i
I \ \ "

'l \, _N-I -- MN-I 002, -Ctl

I \

I x
I x 2

aN_ I ...... at, A1 -M Nco

(27)

in which

N-j j -I

Z"Aj = a r + a r,

rffil rffil

N-1

A 1 = 77, ar

r=l 14

j -_ 2 _ °
, N-1

(28)



The eigenvalues and eigenvectors of the matrix (27) are in general unknown.

But if the chain is monatomic Mj = M, j = 1, . . . , N, one eigenvalue is zero and

its associated eigenvector is

_0 ----- (29)

This of course reflects the invariance of the lattice against rigid translations and

as a result in matrix theory it is a particular case of the somewhat more general

theorem: If the sums of the elements in each row (column) of a matrix coincide,

the matrix has one eigenvalue equal to this sum and the associated eigenvector

is that of eq. (29).

A monatomic chain for which all interactions can be neglected except those

between nearest neighbors yields a matrix A of the form

+b b
\

\

b a \ i

X • \

k •
\ \ \

\ k

\\ \_ \x

0 \ a
\

b a +b/

(30)

with

a = 2a I -Marl; b=-a 1 (31)

This matrix appears in eq. (63) of Appendix E and is discussed there. Use

of eq. (31) above gives then the frequencies

15



4o- 1
w2 sin2 VTr _ (32)=-- --; r =0, 1,..., N 1

r M 2N

The eigenvectors are presented in the same Appendix.

A monatomic chain with two distinct spacing constants a 1 and a 2 regularly

alternating is characterized, for nearest neighbor interactions, by two different

force constants fi, -/ and leads to the matrix

in which

+c b

0
b a c

\ \ \\
a_ (o?) = c

\ \\ \

0 \\ \a b

\b a+b

(33)

a =fl + y-Moil; b =-/2; c = -W (34)

and b, c alternate regularly along the minor diagonals in eq. (33).

This type of matrix is treated in the section following eq. (79') of Appendix

E. It is shown there that if N -- 2n then the eigenvalues and eigenvectors can

be found explicitly. Using eq. (34) we obtain the frequencies

fl+y+ 2 + 2flWcos--+
n

w2 = ; r =1,..., n-1
r M

J0=0

w2 2fl
2n- M

(35)

16



The frequencies w_and _n coincide, for fl, y -. a 1 , with the two frequencies

of eq. (32) obtained by the substitution of r = 0 and r = N/2, respectively. We

note also that the frequency w_n is independent of the number of particles. As

such it is called a "surface" frequency, a term borrowed from the theory of an

elastic continuum with free boundaries. At present no analytic results are

available for the odd case N = 2n + 1.

The diatomic chain with nearest neighbor interactions and masses alter-

nating regularly along the chain has the dynamical matrix

AN( 2) =

u+b b
\

\ 0
b v \
\ \

\ \
\ u \\ \

\ \ b
0 \ \

\ ' '/b *

in which

(36)

u = 2a I -M 1off; v =2a 1 -M 2w2; b =-a I (37)

and the last term on the main diagonal is either u + b (for N odd) or v + b (for

N even). As the odd case does not possess at present analytic solutions, we

consider only N = 2n. Then the eigenvalues and eigenvectors are given in eqs.

(99), (101) and (102), (103) of Appendix E and we can write the frequencies

/M rrkM1 + M2 + 1 - M2)2 + 4 M1 M2 cos 2 2"-'_

M_ M2

k =1,..., n- I

1
O) 2

2n

aI(MI + M2)

MIM 2

17 J

(38)



Again o_22n is the "surface" frequency and as in the previous case there are

two frequency branches or bands corresponding to the ± signs in eq. (38).

For odd N, N = 2n + 1, the only information available is the dispersion

relation

u sin (2n + 2) 8 + 2 u_v sin (2n + 1) 8 + v sin 2n 8

sin 28
: 0 (39)

in which u_v = 2b co s 8. This is of course the characteristic equation of the

matrix in eq. (36) and can be put in the form

{v/'-uusin (n+l) 8+_'-'vsin (nS)} {¢_-uucos (n + 1) 8 + _/'--vvcos n_} = 0 (40)

which exhibits the existence of two frequency branches also in this case.

1.1.2 Linear Chain with Fixed Ends

Here again we assume mass-independent interactions and equidistant spacing

of the equilibrium sites (unless specified otherwise). The two end particles are

supposed to interact with rigid walls via the same force constants employed through-

out the chain. Though more realistic, the inclusion of different force constants

for the end particles will render the problem tractable only be perturbation

methods. We restrict therefore the discussion to the former situation.

The dynamical matrix for the polyatomic case is

off

' - M1 ' - al'\ ...... %-1,

a A2 - M2 o)2_ i

- _\ \ \\ \\ [
AN ('(.,)2) \ I

I \ \ \ i
I \ \ -a

"-%-, ....... %, AN - MN

(41)

18



in which

aj +al; r = 1, N

j=l

A r =

aj + aj ;

j=1 j =1

r--2, ..., N-1

(42)

As for a chain with free ends, the polyatomic case cannot be treated analyti-

cally. The cases for which closed analytic expressions of the eigenfrequencies

are available will be listed below.

The monatomic chain with nearest neighbor interactions only, has the dynami-

cal matrix

ba \ bx

\ \ 0

aN(J) \ \X \\ \b

0 \b \a

(43)

with

a = 2a I -Mcv 2; b =-a I (44)

Using eq. (44) and the result (10) of Appendix E, we obtain the frequencies

4_ 1
c_2 = sin2 Trr , r--l,... N

" m 2(51 + 1)

The eigenvectors are exhibited in eq. (12) of the Appendix.
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The inclusion of interactions among more distant neighbors in the dynamical

matrix makes the problem of calculating the eigenvalues analytically extremely

difficult, and all efforts in this direction have been so far unsuccessful.

The diatomic chain, with particles M1 and Ms alternating regularly along

the chain, can be regarded for N = 2n as a lattice with a basis the unit cell of

which contains two particles of different species. Because of the simplicity of

the situation, one can disregard this feature and proceed directly.

For equidistant spacing and mass-independent interactions, the dynamical

matrix is

u b
\

\ 0

\v \ \

_(_2) = \ (45)
\

\ \
k

kx b k

in which

u =2a I -M I_2; v = 2a I -M 2 _2 (46)

and the last element on the main diagonal is either u (for N odd) or v (for N even).

The eqs. (36) and (42) of Appendix E show, on using eq. (46) above, that the

frequencies for these two cases are given by:

N= 2n

k = 1,...,n

¢, ]+ M2 i (MI - M2)2 + 4MI M2 c°s2 2n + 1

(47)

2O



N=2n+l

_k2--M1M; MI+M2-+ (MI-M2)2 +4MIM2 cos2 2n ÷2

2ct 1
&)2

2n+1
MI

)_ (48)

The dynamical matrix for a diatomic chain with two different spacing constants

similarly alternating is

:b /
0

v c
\ \

\ \

A2n+l (aJ2) --- c \ \x N k

\Xb x \v c

0

(49)

in which

u =,B+T_MlW2; v=/5+T-M2a_2; b=-/3; c =-7 (50)

and fl, T are the two different force constants between nearest neighbors.

(56) and (59) of Appendix E show the frequencies to be

Eqs.

wk2-2M-11M2 I(/3+T)(MI +M2)+ _ _+T)2 (MI+M2)2-16/_)_MIM2sIn2- 2n+2_k I

k--1,...,n

(51

21



Here againwe observe the separation of the frequencies into two distinct

branches. If this type of diatomic chain consists of an evennumber of particles,

N = 2n, exact results are no longer available.

1.1.3 Linear Chain with Periodic Boundary Conditions

The chain is assumed here to form a closed loop. This means that there are

no end particles and the interactions proceed along the shorter separation dis-

tances on the loop. Use of the forces defined in eq. (21) with mass independence

and the assumption of equidistant spacing, yield for the polyatomic case the dynami-

cal matrix

%(J) =,

diag (A-MlOJ2, A-M2c_2, • • • , A-MNC_2) - (a 1 a 2 • • .a n an_ 1 • •

N= 2n

diag (A-MIOj2, A-M2o)2, • •., A- MNoj2) -(a 1 a 2 • • .a n a n an_ 1

N=2n+l

(52)

• " "_l)cyc.

in which diag (** . . . *) denotes a diagonal matrix with the elements specified in

parantheses, and (**... *)eye. denotes a matrix the first row of which consists

of the specified elements *, the other rows being obtained from the first by

(counter-clockwise) cyclic permutations. Also

A z

r- n-1
E"--"I

?i aj +%;2 N=2n
i

j=l

fl

2 _ a;j N=2n +1
j--1

(53)
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We note that the number of independent force constants is here reduced to

either N/2 or (N- I)/2.

In contrast to previous cases, the frequencies and eigenvectors of the monatomic

chain are known explicitly for the general case and can be given from eqs. (153)

and (154) of Appendix E as follows:

n-1

a sin 2 _k j a' 2-7- +-_-[1 - (-l) k ]
j=l

k=0, 1,---, 2n-1 ; N=2n

n

M4E__ a. sin2 rrkj
J 2n+l

j=1

k=0,1, "'', 2n ; N=2n+l

(54)

It is seen that one frequency (k =0) vanishes just as for a chain with free ends.

The frequencies and eigenvectors of a diatomic chain with an even number of

particles can also be found. Using the eqs. (135) and (140) of Appendix E, we

find the frequencies

_k2 (M1 +M2)2 MI _M2 2
-- SM 1 M2 __k 2 + _"_k2 +n + (_"_k 2 -- _'_k 2 +n )2 + 4 M| + M 2 _'_k2 _'_k2 +n

k =0, "'" , n- 1 (55)

*The corresponding result in the literature is given only for nearest neighbors interactions and is

not as transparent as the above.
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in which

_2 2 4 a sin2 7rr j- . _ +a n
r M1 + M2 J 2n

j=l

r : 0, ''" , 2n- 1 (56)

It is of interest to note that when the odd-indexed a's vanish, the radical in

eq. (55) disappears and a decoupling of the motion takes place, i.e., the resulting

frequencies are those of two separate loops with particles M1 and M 2 respectively.

Here also the diatomic chain with an odd number of particles cannot be solved

analytically.

Other situations can be also treated exactly. For instance if, everything being

as before, we introduce two distinct spacing constants, as in Fig. 2, the dynamical

matrix for a chain with only nearest neighbor interactions, will be

/In 00:\
/ b v c

[ o,, ,, \ 0|

a2. (0o2) :/', \ \ \\c
', ', (57)J

0 0 \c \u _/
\c 0--0. b _

in which

0o2. v = /3 +T-M 2 oo2 • b =-/3; c = -Y (58)u =fi+y-M 1 ,

*These are just the frequencies for a monatomicchain with particle mass(M 1 +M2)/2.
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On using (58) above and eq. (161) of Appendix E we find the frequencies

1[ / lc_k2 : 2MIM 2 (/3 +7) (MI +M2) ± (/3+3/) 2 (MI +M2)2 - 16 fiwMIM 2 sin 2 wkn

k=0, "'', n-1 (59)

1.2 Two-Dimensional Lattices

The plane lattices to be considered in this section will be rectangular. The

model assumed is shown in Fig. 3: the unit cell is based on the vectors a 1 =

a 1 i; a 2 = a 2 j , where i, j are the unit vectors in the x- and y- directions,

respectively. We assume the lattice to consist of N2 horizontal rows equidistantly

separated, with N 1 particles equidistantly spaced in each row.

The discussion will be restricted here to at most eight neighbors (for parti-

cles not on the boundary). For instance, the particle located at the site a 1 + a 2

is assumed to interact via two-body forces only with the particles at the sites

25



0 (this is labeled l in Fig. 3),a 1, 2a1, a2,2a 2, 2a1 +a 2, a1 + 2a2 and 2(a1 + a2).

For these sites to represent indeed the first, secondand third neighbors, we have

to assume

aI, a2 >--I lal 2 + a 22 2 "

The particles will be constrained to vibrate only in the plane of the lattice.

The force density tensor @ will then be that of eq. (22), with a" suppressed.

The eight unit vectors E needed in eq. (22), and their counterparts _, are given

hereby

_1 =-E2 : i I1 :-_2 :J

_3 :-E4:J _3 :-_4 :-i

a I + a 2 -a I + a 2

_S :-E0 ' _S : -_6 :

a +a 2 +a 22

-a I + a 2 a I + a 2
E7 :- E8 : _7 : - _8 -

/a21 +a22 /a_ +a 2

(60)

Though immaterial in the two-dimensional case, we have used here the convention

that angles between unit vectors are measured counter-clockwise from E to _.

There are three central and three noncentral force constants associated with

the unit vectors of (60), in the following manner

{El, E2 } ,._ Ctl ; {E3, E4 } ,__ a2 ; {ES, E6 ' E7 ' E8 ) ___ Ca3 (61)

and similar relations for _ with a' .

We consider below different boundary conditions.

1.2.1 Plane Lattice with Free Boundaries

The equations of motion and the dynamical matrix are found in Appendix A.

Here we quote the results.
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A monatomic lattice has the dynamical matrix

in which

I

a (_2) _

/ . \A3 \

\

B A 2 \\
\ \ \

\ \
\ \ \

\ \ \B
\ A2

\

F \
\ \ \ 0
\ \ \

\ \ \
\ \

\ \ \
0\ \ \

\

\ G F

N 1 × N 1

• e ,ig

B
\

\

B
\

A2 \
\

\
\

\

\ \
\ \

\ A 2 \B

\B l s
N 1

(62)

× N 1

F _

A x B
\

\
B A \

\ ,, \
\ \ \

\ ", \
\ "A ",B

B At
N 1

; G--

/co \
\ \

\ \

\ \
\ \\

\ D
\ \

× NI N 1 X N 1

where G denotes the transpose of G, and A x , A 2 , . . . , E are defined in eqs. (6)

and (7) of Appendix A.

Two eigenfrequencies can be seen from the equations of motion to vanish,

corresponding of course to a rigid translation of the lattice. The two independent

eigenvectors for this case are obtained when putting in turn
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(1) (1)US. = 1 ; U_. : -1
(64)

for all (_, m ), with U defined in eq. (4) of Appendix A.

The remaining eigenfrequencies cannot be found analytically in the general

case. But if next-nearest neighbor interactions are neglected, then the following

simplifications take place

D=E=O;A 1

and

:A+B; A 2 :A+C; A 3 :A 4 =A+B+C (65)

F' F"G:G; : :F+G (66)

Note that for this case the motions of the atoms in the x- and y-direction are

independent.

Using (65), the dynamical matrix simplifies to

a2N, N,, (_2) :

/F+G

G\
\

\
\

G\

\

F \
\ \
\ \

\ \

\ \
\ \ \

\ F G
\

\

\G F+G

(67)

As F and G are now commuting matrices, we can use eq. (203) of Appendix E

and the definitions of the 2 × 2 matrices A, B, C to write the frequencies:

[_(,)] 2 4a sin2 kG +4/____:'sin2 j ?
kj M M

ro_ (2) -] 2 4a' 4/3- sin 2 k8 +-- sin 2 j ?
L ki ] M M

inwhich (_ = _r/2Ni; ? = _/2N 2.

>

J
k:0," • ", N 1 -1

j :0,'" ", N2-1

(68)
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It is seen therefore that a rectangular plane lattice, in this model, has 2N 1 N2 - 1

distinct normal frequencies. This property persists even for the case N1 = N2

or when the unit cell is a square (for which a = fl and a' = fl' ). On the other

hand, if N1 = N2 and the unit cell is square, the number of distinct frequencies

is reduced to N1 N2, each being doubly degenerate.

It is not difficult now to write down the dynamical matrix for the diatomic

lattice. In addition to the two masses one has to take into account the three types

of interaction possible:

MI-*-_M 1 ; MI-**-M2 ; M2-*-_-M2

The case M1-*_M2 corresponds here to nearest neighbors and the other two to

next nearest neighbors. Since we cannot find the eigenvalues for more distant

neighbors even in the monatomic case, we shall restrict the discussion to nearest

neighbors interactions. The dynamical matrix for this case is given then essentially

by eq. (67), with the following modifications: 1. The 2 × 2-A matrices alternate

regularly along the main diagonal of F ( )-

F( 1 ) =

A (1) + B B \\

! B A (2) "

\\\\ \ 0\

\ \ \B
0 \ \\

\ \B 'A( )+B

(69)

in which

A( 1 ) =

A (2) =

{2(a +fi')-M 1_2 0 /0 2(a' +/3)- Mlo_2

[2 (cL +/3' ) - M2a_2 0 /
Q 0 2(a' +fi)- M2co2/
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and

F (2) :

A 2) + B B \
\

B A(1)\\ 0
\ \ \

\ \ \
\ \ \

0 \ \ \\ B
\ \

\ 'B \A( ) +B

(71)

The dynamical matrix has the form

F(
1)+G GX

G F(2)\\\ \ 0
\ \ \

\ \ \

\ \ \\G0 \ \

\ \
\G \F( ) + G

(72)

where the matrices F ( 1 ), F (2) alternate regularly along the main diagonal.

Though certain reductions of the dynamical matrix in eq. (72) are possible,

analytic expressions for the frequencies cannot be found.

0 0 0 0

Figure4. o-,M1;o _M 2

On the otherhand if we consider the lattice shown in Fig. 4, which consists of

alternating rows of two types of particles M1 ,M 2 , and assume N 2 = 2 n 2 , the dynami-

cal matrix will have the form
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F _) + G G
\

G F(2_\ 0
\ \ \

\ \ \Gk \

0 \ \

\G \F (21 + G

(73)

in which F ( 1 ) and F (2) alternate along the main diagonal of h and

F(J ) =

A (i) + B B
\

B l (J'_\ 0
\ \ \

\ \ \
\ \ \

\ k \
0 \ \ B

\ \
\ X

B A (j) +B /

\
j = 1,2 (74)

The matrices A (1), A(2),B and G are as defined previously. As F (1),

F (1) and G are commuting in pairs, it is shown in Appendix E that the eigen-

values of h can be found. Using then eq. (209) of that Appendix, we obtain two

groups of frequencies, each group consisting of four branches:

Group 1

_ 1 {(M + M2) (/3' + 2 a sin 2 j 0)M1M2 _ 1

±' ¢(M l-M2 )2 (fi' +2a sin 2 j 0) 2 + 4M1M2/5'2 cos2k_ 0

1

MIM 2 (M +M2) (/3 + 2a' sin 2 j_)

1 - M2)2 (/3 + 2 a' sin 2 j 0) 2 + 4M 1 M2 f12 cos 2 k _ ) (75)
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in which

Group 2

j :0,...,NI-1; k=l,...,n2_l; _- .... _ • _ (76)
2N1 , _0 = 2n2

_ = M1 +M2) + 2a sin 2 j + 1 -M2 )2 + 2 a sin2 j +MIM2/3'2

with _ as ineq.(76) and j =0, . . . , N 1- 1.

(77)

The frequencies in the last group are those associated with the surface modes.

Two of these vanish (for j = 0), corresponding to rigid translations of the lattice.

1.2.2 Plane Lattice with Rigid Boundaries

Here we assume the marginal particles to interact with the rigid boundaries

via the same two-body forces operating inside the lattice. Therefore using the

same notation as before, the only equations of motion that change are those for

the marginal particles. Proceeding as in§ 1.2 of Appendix A we find the dynamical

matrix for a monatomic lattice to be of the form:

FG\ \

\ \

\\ \
\ \ \

\ \ \

G
N 2 × N 2

(78)
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in which

F

B \ \
\ \ \

\\ \
\\ \

\ \ \
\\ \B

\ \

;G=

N 1 x N 1 N 1 x N 1

/c a \
\ \

E\\
\ \\

\ \\
\ \ \

\ \\\D\

\ \\E e/

and A, B, . . . , E are as defined in eq. (6) of Appendix A.

(79)

Again we note that F, G, G do not commute. This stems from the fact that

D and E do not commute with one another or with A, B. The coupling between

the motions in the x- and y-directions is given by D and E, more specifically by

the matrix element S . It is clear therefore, from the expression defining S, that

#

if a a "_ a 3 , then _ _ 0 and all the 2 x 2 matrices involved become diagonal, with

D = E = ; -- G (80)

-7

Assuming the condition _ _ 0 to be satisfied, the motions in the x- and y-directions

become independent and the frequencies will be obtained by equating to zero the

kkj given in eq. (175) of Appendix E, namely

I +2Cco_ v---_J +2 B+ 2Dcos-- cos

N2 + 1 N2 + 1 N1 + 1

k=l, "'', N1; j =1, "'', N2

Finally two groups of frequencies are obtained

-0

_k2j - _ 1-cOS N_+I + 1-cos +-- 1-cos N-_+lCOS

(82)
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and

( 7( (1  J/,83,o_j 2a' 1-cos +-- 1-cos _J + -cos_cos
M ', N1 +1] \ N2 +1] _ \ N i +! N_/

with kand j as ineq.(81).

We remark that the boundary conditions under consideration do not lead to

degeneracies in the spectrum, even for a lattice with a square unit cell (in which

case a = fl ; a' =/_ ). The degeneracy that exists for a square lattice (N i = N 2)

with square unit cell, is removed by the introduction of the next-nearest neighbor

interactions, represented here by y.

For the diatomic lattice with regular alternation of M1 and M
P

in the dynamical matrix are likewise obvious and we can write:

2, the changes

a (_2) :

/ F 1 G\

G F2 \\ 0
\ N

N \
N \ \\ N

\ \ \

\ \ \G
0 \ \

\ \
\
G \F

(84)

in which F 1 and F 2 alternate regularly along the main diagonal and

h z) B /h (2) B\\ \

\

\\. \\\ \B \ \\ N
\

\
"XB \\A( ) \B

0

N
N

N\\B

\\l( )
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The matrices A (1), l (2) which alternate regularly in F 1 , F 2 are as defined

ineq. (70),D andE as ineq. (80), {; as ineq.(79),andB,C as ineq. (6) of

Appendix A.

The eigenvalues of A(o_) can be found explicitly, for all parities of N1 ,N 2 ,

as shown in the treatment following eq. (177) of Appendix E. Here we quote re-

sults only for the case N2 = 2 n 2 , and use eq. (195) in Appendix E (with Ar re-

placed by A(r), r = 1, 2) to write down the frequencies. These appear in four

distinct branches:

t"

w2 _ 1 _(MI÷M2) [a+fi'+2y(1-cosj_cosk_] ±

jk M1M2 L

/(M -M2)2 [a+/Y+2y(1-cosj_cosk_0] 2+4M1M 2[acos j_+/Ycoskcp] 2}

(86)

_ 1 {(M 1 +M2) [a' +fi+2y (1-cos j_cosk_0)] ±W2k MIM2

_+¢(M I-M2)2 [cd+fl+2V (1-cosj_cosk_0)] 2+4MIM 2[a'cosj_+flcosk_0] 2}

with

k=l, "'', n 2 , j --1 • ,N 1 , 8- _ • vz
NI + 1 2n 2 + 1

It is of interest to compare the frequency spectrum of this model with the one

obtained when a rearrangement of the particles has taken place. The rearrangement

envisaged is the one already considered in Fig. 4 of the previous section, namely

alternating rows of two types of particles, each row consisting of identical particles.

The dynamical matrix is (where for simplicity we assume N2 = 2n 2 ):
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in which

F 1

F G /

\\ 0
\

\

h (_o2) : G F2 \
\ \ \

\ g
0 \ \

\x G \xF2

_\\\ \\\ \\

: \ 0 \\\_ \\\\\ \B

\B \\A(1)

\

(87)

_(2) B \

\O 1 (21\\\\\ 0

\ \ _ (89)
; F2 : \\ \ \ [

\ \ \B ]
\ \

\ \
B \A(2_/

and A(1),A(2),B ,G are asineq. (84).

The matrices F 1 , F2 and G commute in pairs, and so do all the 2 × 2 matrices

involved. This being the case, eq. (183) of Appendix E shows the frequencies to

the roots of the matric equations

2

 4(M1M2/ I {A I ,A 2 2+ 2Bcos jO+2 [C+2Dcos j0] cos k?} ×

in which

{.A(_) + A(2) q0}× 2 +2Bcos j 0-2 [C+2Dcos j0]cosk : 0 (90)

0 - v: 77 N1 • • • (91)--- ; q0- ; j : 1, "'" , ; k : 1, , n 2
N 1 + 1 2n 2 + 1
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Finally, the frequencies we obtain, appear in four distinct branches:

-_ I(MI+M2) [a(l-cos j_)+fl'+2y] ±

-+ _/(M1-M2)2 [a(l -cos j3) +/3'+27] 2 +4MIM 2 [/3'+2_/cos j812 cos2kq))

_ 1 I(M1 +M2) [a'(1-cosj_)+fl+2_, ] ±_k2J MIM2

± /(M 1 -M2)2 [a' (1-cos j_) +/3+2:y ]2 +4MIM2 [fi+2y cosj_]2cos2k_0 )
withk, j ,_ and _0 as ineq. (91).

(92)

Similar expressions can be easily found also in case N 2 is odd.

1.2.3 Plane Lattice with Periodic Boundary Conditions

Here particles on opposite boundaries interact with one another and therefore

we can envisage the lattice particles as being located on the surface of a torus.

This means that there are no marginal particles.

One can write down the dynamical matrix taking account of all possible inter-

actions, since in fact the eigenfrequencies can be explicitly exhibited for this

general case. For the sake of simplicity and comparison with preceding results,

we consider below only nearest and next-nearest neighbor interactions.

It is not difficult to show that the dynamical matrix for the monatomic lattice is

A (_2) :

/rG

G\ \ \ 0
x \ \

\ \ X
0 \ \ \

6 G

\

F
2xN2

(93)
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where

F =

B_, \ 0 1

\ _. \

\\ \\ \\
\ \ \

0 \ \ xB\ \

\ \ \
B B l NI×N 1

;G=

__x B E\

_\_\\ 0 \

_ \\ \\ \\

_ o\ \ \

\ ", ',?

\D E c/
N 1 × N 1

/c E D\
\ \

\

\ \ \
0 \\ \\ E

E \ \D e/

The matrices A, . . . , E are as defined in eq. (6) of Appendix A.

(94)

It is seen that a (w2) is a two-dimensional circulant matrix and that F, G and

are circulant in their elements. Then we can use eq. (216) of Appendix E to

write down the following matric equation the roots of which are the frequencies

of the system:

0--A+2Bcos jff+2Ccoskq0+2Dcos (kq_+ jO) +

+ 2E cos (k_0 - j 69) =- Akj ; k = 0, • • ", N2

in which 69 = 2 7r/N 1 ; q_ = 2 7r/N 2 •

- 1 ; j = 0, ''', N1 - 1 (95)

The explicit form of the 2 × 2 matrix Akj is

Ssinj69sinkq0 ; 4a'sin 2(j69/2)+4flsin 2(kq0/2)+4y'(1-cos j69coskq0)-Mc. 2 /

(96)

Finally the frequencies are given by

_J =-_ a +a')sin2(J69/2)+(13+fi')sin2(k_/2)+(3/+T')(1-c°s j69 c°skcp) ±

± /[(a-a')sin 2 (j 69/2) + (fi' - fl) sin 2 (kq0/2) + (T - 9/ ) (1 - cos j 69co skq0) ] 2 + (2Ssinj 69sinkqo) 2)

j = 0, "", N 1 - 1 ; k -- 0, "'', N2 - 1, 69= 27r/N1; qo = 27r/N 2 (97)
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We note that here we obtain two branches, a result to be expected from the in-

clusion of next-nearest neighbor interactions. If S is negligible, then the x- and

y-motions are independent and the frequency spectrum reduces to one branch

only. We observe that for j = k = 0 we obtain a vanishing, doubly degenerate

frequency.

When we consider the diatomic lattice the only solvable case is when both N1

and N 2 are even. Then, if N1 = 2n 1 , N2 = 2n2, the dynamical matrix takes the form:

A(_ 2) =

/F I G,\ G

_\ F2 \\\ 0

\\ \\ \ /
\\ \ \\ ]

0 \\ F_ G /
/

G G F2/
N2xN 2

(98)

in which G and _ are as for the monatomic case, while

F1

A(_) B B \\ 0

\\ \
\ \ \

\ \ \
\ \ \

\ A(_) B

\\B A(2)]

l 2) B\ B
\ 0

I i A(1) \

Bx x \
\ \

F 2 = \ \ \
\ \ \

\ XA(2) \
\ B

B \B A(1)

(99)

and A(I) , A(2) as in eq. (84).

The matrices F1 , F2 and G do not commute. Therefore the appropriate

treatment is that preceding eq. {241) of Appendix E where it is shown that

h(_ 2) is reducible to two types of block matrices on the main diagonal. These

matrices denoted K(°) and K(1) in eq. (241), become here 4 × 4 matrices.

These matrices cannot be further simplified and the resulting equations are of
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the fourth degree in off. Hence, for this model, we obtain eight frequency branches.

Analytic expressions for the frequencies can be found only for 4 (N 1 + N2 - 2)

of them - corresponding to the cases for which the coefficients of the coupling

parameter 8 vanish, making all the 2 x 2 matrices diagonal. Below we exhibit

the 2N1N2 frequencies obtained when $ is dropped from the start:

a_2j MI M2

(M +M 2) [a +fl° + 2T (1 -cos j_coskq_)] +-

+ /(M 1 -M2)2 [a + fl' + 2_(1 - cos j _ cos k_)] 2 + 4M1M2 [a cos j _ + fl'cos kcp)]2}

(100)

(M [a ° +fi+2y (1 -cos jOcos k_)] ++M2")

+_ /(M1-M2)2 [a' +fl+2W (1-cosjGcosk_)] 2 +4MiM2[a'cos j_+flcoskq_] _}

(Mx+M2) [a+fl' +2T(1 +cos jGcosk_)] +

(M - M ) 2 [a
2

(101)

+fi° +2T(1 +cos j 8coskcp)] 2 +4M1M 2 [acos j8-fi' cos k_P]2}

o_j
1

MI M2

(102)

(M + M2) +/3 + 27 + cos(1 J kcp)]cos +

i /(M1-M2) 2 [a* +fl+2T (1 +cosj_cosk_)]2+4M1M 2 [a' cosj_-flcosk_] 2}

In the last four expressions we have

(103)

j : O, . . . , n 1 - 1 ; k = O, . • • , n 2 - 1 ; _ = 7T/n 1 ; cp = 7z/n 2 (104)

The 4 (N 1 + N 2 - 2) frequencies mentioned previously can be obtained from

eq. (100) - (102) by letting j and k take in turn the value 0. Two frequencies,

obtained from eqs. (100) and (10i) for k = j = 0, vanish.
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1.3 Three-Dimensional Lattices

In this section we consider a rectangular space lattice. The model assumed

is shown in Fig. 5. The unit cell is based on the vectors a 1 = a I i, a 2 = a2j ;

a 3 = a3k, where i, j, k are unit vectors in the x-, y- and z-directions, respectively.

We further assume the lattice to consist of N1 particles in each row parallel to

the x-axis, N2 and N3 particles in rows parallel to the y- and z-axes, respectively.

S
jJ ./

//I/

!

2N1N2/
" I

/

/

r

/

/

i /'

1

Y J./

I

_r j

/

j ./

A/

.//

///'

/
N1N3 /

/

/
2N /

NI(N3+ !)

_ X

1 al 2 3 N1

Figure 5

No constraints are imposed here on the vibrations of the particles and hence

the force tensor ¢ will be used in the form given by eq. (22). The discussion

will include 26 immediate neighbors, located at the vertices of 8 unit cells. For

these to represent first, second and third neighbors, certain not too stringent

conditions have to be imposed on the relative values of al, a 2 and a 3 .
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As before, the two-body interactions considered are assumed to be

mass-independent.

The unit vectors t, _ , 11and the force constants associatedwith the twenty-

six neighbors are exhibited in section 2 of Appendix A.

1.3.1 Lattice with Free Boundaries

Following the procedure described in Appendix A, the dynamical matrix for

the monatomic lattice could be written down so as to include all the neighbors

considered in the present model. Since such generality precludes an exact

solution for the frequencies, the discussion below will be restricted to the case

of nearest neighbors interactions. The dynamical matrix for this case is:

in which

=

IS + T T\
\ 0

T S \
\ \ \

\ \ \

\ \ x

\ \ \

\ \S
0 x

\ "T

\

T

S + T/N2×N2

(lO5)

S .__

F+G G
x

G F \ 0
\

\ \
\ \ \

\ \ \
\ \ \

0 X F
\

G

,\

G

F + G/N3xN 3

T __

/H
\

\
\

\

0

\

\
\

\

\

U/..
xN 3

(106)
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and

F _

A+BI Bl\ 0

\ \

\ \ \
•, \ ;

\ \

\ \A \\
\ B1

\

B1 A+B1

\
\ 0

\

\G=
\

\

0 \

B3/

n Z

NI×N 1

0 \\

\
0

\

\

\

\B2/N1x

(lO7)

N 1

The matrices B r are as in eqs. (12) of Appendix A and A as in eq. (18) of the

same, with all C and D suppressed. All the 3 x 3 matrices involved are now
r r

diagonal.

The frequencies can be found immediately on using eq. (268) of Appendix E:

in which

tt

ct1 sin 2 j _ + ct 2 sin 2 k_ + a 3 sin 2 re
a_ 2 4 ,,

jkr -:M Ct'l sin2 j_ + a2 sin2 kq9 + a 3 sin 2 r_b

st #

_a I sin 2 j _ + a 2 sin 2 k_ + a 3 sin 2 r¢

(108)

-%

j = 0 .... , N1 _ 1 ; k = 0, . . . , N2 - 1 ; r = 0, • • • , N3 - 1 _ (109)

= Tr/2N 1 ; _ = 7r/2N 2 ; ¢ = 7r/2N 3 J

The zero frequency _Ooo0 is triply degenerate, while the rest are distinct.

These frequencies will remain distinct even for a cubic unit cell, if at least one

dimension (Ni) of the lattice is different from the other two. For a cubic lattice

with a cubic unit ceil all the frequencies (108) become triply degenerate in this

approximation.

The dynamical matrix for the diatomic lattice can be readily written down,

but as in the corresponding plane lattice the frequencies cannot be found exactly.

Here we mention only that exact solutions exist for a lattice composed of alternating
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planes of two particle-species, each plane containing like particles. In the approxi-

mation of nearest neighbors, this type of lattice possessestwelve distinct frequency

branches.

1.3.2 Lattice with Rigid Boundaries

The dynamical matrix for the monatomic lattice can be written down when

interactions up to third neighbors are included, but the frequencies of the system

cannot be found analytically. Therefore we restrict the discussion to the following

soluble case: 1. Third order neighbors are neglected; 2. The off-diagonal elements

of the matrices C defined in Appendix A are dropped. This last requirement is
r

, °equivalent to assuming fij _ flj , j =1 2, 3.

Assuming these conditions to be satisfied, the dynamical matrix becomes

a(o?) =

/S T

T\\ \\\

\\\\ \\

\ \ ,,
\ \ T

\ \

\ \ \
T S/N2xN2

(11o)

with

/F G /
G\\ \ 0

\\\\ \\

0\\\\\ \ G]

\

T __

K

H\ \ 0

K\ \ \\ \

\ \ \
\ \ K

\ \
k It

(111)
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and

G __.

B3 Ca\,, 0 \

\ \ C3/

0 \ \\
\ ,,

; H=

/B 2 C1

\ \ 0
C1 \ \

\ \ \
\\\ \

\ \

0 \ \

\ '\C1

CI

B2/

S _

Cs '

\ 0
\

\

\
\

o \

q

F _

A\ B1 \ 0

\ \ B1
\

\B1 #,

(i12)

Here the matrices B. are as in eq. (12) of Appendix A while according to
1

requirement (2) above we obtain

"1
CI = C2 = - diag (/31 /3,fix)

t;

C3 = C4 -- - di:_g (/32 /32 /32)

el

Cs = C6 = -diag (/33 /33/33 )

and

(113)

U #

A= diag (2[a I +a 2 + a3 +2(/3, + /32+f_a)] -MJ;

al #

2 [aI + a2 + a3 + 2(_ 1 + /32 +/333] -Ma3)

2 [_i +% +% + 2(/3, +_'_+/3s)] -MJ;

(114)

On using eq. (244) of Appendix E the frequencies can be written down

immediately:
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II I

a I sin 2 jO+a 2 sin2kq0 + a 3 sin 2r_+/31(1-cos 2j_cos2kg)

+ /32(1 -cos 2j 0 cos 2r_) +/3_ (i -cos 2k_0 cos 2r_b)

I II

a 1 sin 2jo+a 2 sin2kq0 + a a sin 2rv,b+/31(1-eos 2j_cos2kq0)

+ p_ (1 -cos2j_ cos 2r_b) +/33(1 -cos 2k_0 cos r_b)

tl #

a 1 sin i j8+ =2 sina k(P + =3 sin2 r_b+fll'(1 -cos 2jO cos 2k(p)

+/32(1-c°s2jScos 2r¢) +/33(1-eos2k_cos 2r_)

(ii5)

in which

j=l ..... N i k=l ..... N2;r=l,. N3;_- 97 97 97; .., ; _- ; _b= (116)

2(Nl+ 1) 2(N 2 + 1) 2(N 3 + 1)

If instead of neglecting the third neighbors interactions entirely we assume

the force constants to be nearly equal,

7 _ 7' _ 7" (ii7)

then all the matrices I) defined in Appendix A become equal to -3' I. The fre-

quencies for this case can again be found and will be as given in eq. (115), to

each being added the term

27(1 - cos 2j _9cos 2k_0 cos 2r_b). (118)

Whether this term is added or not, we see that this model posses three distinct

frequency branches, a property that persists for a lattice with cubic unit cell.

On the other hand if such a lattice is cubic (i.e., N 1 = N2 = N3) the frequencies

become triply degenerate.

We consider now a diatomic lattice and shall assume the arrangement to be

such that no two adjacent particles are alike. Then the dynamical matrix reads:
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1
\ Sx2\\\\0

A(cv2) = k 0 \\ \\T / ; N2 = 2n2 (119)

\ T S2 /
• N2xN 2

in which

., o
\\ x\ \\\

S, : \ \\ \\ _ ; S2: \ '\\l;J0 \\ \ G] 0 \\ \

AI Bx A2
\

B1 A \ B I
x \2\ \

= _ _ ; f2= \
\ \

0 _ _ B 0\\

I] 1 B I
xN I

_\\ 0
\

\ \

\ \

\ \

B1
\

; N 3 = 2n 3

; N1 = 2n I

(120)

The matrices Si ,Fi , hi ( i = 1,2) alternate regularly along the main

diagonals of the appropriate matrices. G and T are as in eq. (111), while Ai is

as given in eq. (114) with M replaced by Mi, i = 1, 2. We have chosen N1 , N2 ,

N3, to be all even only to simplify the presentation, but in fact all possible choices

lead, in this model, to exact solutions.
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The frequencies of the system can be obtained by equating to zero the k._
jkr

in eq. (265) of Appendix E and solving for o02. Here we make use from the

start of eq. (117) to include the third neighbors interactions. For brevity, we

present the frequencies w2 as elements of a 3 x 3 diagonal matrix _±
jkr '

¢-
_± _ 1 ]_

jkr MIM2

in which

Pjkr = B1 + B2 + B3 + 2C1(1 - cos j 3coskq_)+2C3(1 - cos j3cos r_)

+ 2C s (1 - co s k q_cos r_b) - _ I(1 - co s j _ co s k_ co s r _) (122)

Qjkr --B1 cos j3 +B2cosk_+B3cosr_b. (123)

All of the matrices appearing above are as in the monatomic case. On the

other hand, we have here

j =1 ..... 2n 1;k=l ..... n 2, r=l, 2n 3; _-
97 7T 77

/

-_;q_- ; V:=-- .
NI+I N2+I N3+I

Eq. (122) shows the existence in this model, of six distinct frequency branches.

1.3.3 Lattice With Periodic Boundaries

The dynamical matrix for the monatomic lattice to be displayed here contains

all the interactions assumed in the model.

a(_ 2) :

s 7,

T \ \\0
\ N \

\

0 \ \\T

T \T "S
N 2

(123)
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in which

B
\

H=

\ \
G\ \ 0

/\\\
s:/\ \\

0 \\ \\\\G

_G \\G \ F/N3

H\ K\ L

\0

/A B1 Bx \
\ \

BI\ \ 0

F :_ \\\\ \\

\B 1 B 1 A/

; G=

N 1

\
C4\\ \ 0

\ \ \

\ \ \
\ \ \

0 \ \ Ca

\% \ \C 4 B3/N1

C1 C2 \
\

C2 \ \
\ \ \0

\ \\

\ \ \
C1

0 \ \

\CI C2 \B2/

D3\

0

IC s D1
\

D3\\ \

K= \ \ \
\ \ \

\ \ \

0 \ \

\D I I)3\N 1 N 1

D 1

cs /

/ eft D 4 D 2

L :_ \\ \\\\

\o;':',°C6

(124)

All of the matrices A, B1 , . . . , D4 are as defined in § 2 of Appendix A.

The frequencies are obtained by equating to zero the determinant of the

matrix in eq. (274) of Appendix E, thus leading to a third degree equation for w2.

Explicit expressions can be derived if we assume the validity of the simplified

conditions exhibited in eqs. (113) and (117), for which all the 3 x 3 matrices

become diagonal.

For this case the frequencies oj2 are the elements of the 3 x 3 diagonal

matrix _jkr given by
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2 _'B1 (1 - cos j 6_) +B 2 (1 -cos kq0) +B 3 (1 -cos r_b) +
Qjkr - M t.

+2C 1(1-cos j_coskq_)+2C 3(1-cos j_cosr¢)+2C s(1-coskq_cosr#)

4VI (1 -cos j _3cos kq0 cos r_b)_
m

in which

j=0,.'',NI-1;k=0,-",N2-1; r=0,..-,N 3-

and the matrices B_

above.

(125)

1 ; _ = 2_r/N t ; _0= 27r/N2; _b-- 2rr/N 3

(126)

are as in eq. (12) of Appendix A, while Ci as in eq. (113)

Three distinct frequency branches appear also here.

The only soluble case for a diatomic lattice is when NI, N2 , N3 are all even.

This is in contrast to the diatomic lattice with rigid boundaries. The changes

in the dynamical matrix of eq. (123) are as follows: instead of the S given in

eq. (124) there are S 1 and S 2 alternating on the main diagonal of A(w2), each

one with alternating F 1 and F 2 on their main diagonals,

S 1 --

\

G F2 \ 0
\ ',

\ \ x
0\ \ \

\ \ G

\c \_ \G F2/

F2 Gx G

IG F_ \x 0

\\ \\ \; S2 : \

\G G F1/

(127)

[ B1 A2 \ 0 _ /B1 A1 \

_I \ \ \ , . F2 :( \\ \\_\\0F1-I \ \ \\ / '

\0 X\', B,] o ,, \B,
\B, B, \A,/ _B, B,\A,

(128)

in which again Ai is as givenin eq. (114) withM replaced by Mi, i = 1, 2.
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Oncemore we assume the conditions given in eqs. (113)and (117), andmake

use of the results (306)and (307)in AppendixE to solve for the frequencies. It

is seen that there are 24 distinct branches and we exhibit below six typical fre-

quencies as the elements of a 3 x 3 diagonalmatrix _±
jkr,

Q± _ 1 {-(M1 +M2)Pjkr ± ?(M1-M2)2 Pk2jr +4MIM2 Q2jkr } (129)
jkr MIM2

in which Pjkr and Qikr are as defined in eqs. (122), (123), and

j =0," " ", n I -1; k=O," "', n2-1; r =0," • ", na-1; _9=rr/nl ; qo=rr/n2 ;¢= 7r/n3

(130)

Three additional matrices of the same type as in eq. (129) but with different

signs accompanying the cosines, complete the frequency spectrum of h(_2). We

note that the functional form of the frequencies for periodic boundary conditions

coincides with that for rigid boundaries.

We conclude this chapter with two remarks: First, the treatment of harmonic

lattices described in the opening section is fully adequate for attacking lattices

with symmetries different from the rectangular model considered here. Second,

although the linear chain and the plane lattice particles have been assumed to

vibrate longitudinally and in the plane respectively, it is readily seen that these

limitations can be dropped if certain simple reductions are carried out in the

three-dimensional lattice.
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CHAPTER II

OTHER APPLICATIONS

The physics of periodic units is by no means restricted to lattice-dynamical

problems. In this chapter we shall present also situations which are unrelated

to calculations with normal mode frequencies, yet require handling by similar

mathematical techniques. The functions of matrices that arise and the finite

sums associated with these, are not necessarily connectedwith the statistical

mechanicsof the systems. The functions appear naturally in most of the situa-

tions considered. The examples below, selected from diverse fields, will illu-

strate these ideas.

The theory of electrical lines is entirely analogousto lattice dynamics theory,

and onecan indeed set up a one-to-one correspondence betweenthe quantities of

interest in both theories. An example of this is given by Brillouin [4 ] in the

treatment of an electrical line analogousto a diatomic linear chain with two

distinct spacingconstants.

A different example from classical physics was discussed by G. N. Watson

[27]. He becameinterested in the evaluation of sums of the form:

SN (r) :

N-1

Z
k=l

[cosec (k0/2)]-_ ; _ = 27r/N; r=l,3, (1)
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Apparently, these sums occur in a classical treatment of a Bohr type atom:

electrons, equidistantly spaced, are assumed to move in the same circular orbit,

with the positive nucleus at the center. The small oscillations of the system are

found under the assumption of Coulomb interactions and the sums enter the re-

sulting frequencies° The analogous gravitational problem is the motion of

satellites rotating in a circle about a planet. This is a simplified form of the

problem of Saturnts rings considered by Maxwell.

The sum above, laboriously evaluated by Watson, can be immediately brought

to the form of a trace of a known matrix, on using the identity

2 sin 2 (k8/2) = 1-cos k_9 (2)

Introducing a parameter c, which is ultimately made to vanish, we can write

S 1 1 -r/2S N(r) = lim +_--_cos kG (3)
_--_0 k =1

This sum is treated in eq. (90) of Chapter HI.

The statistical mechanics of a finite plane lattice fully packed with rigid

dimers (these are pairs of particles connected by bonds) provides an example

of a situation where normal mode vibrations do not appear. The problem which

has been treated independently by Fisher [28 ] and Kasteleyn [ 29 ], is to evaluate

the eonfigurational grand partition function of the system

ZMN - ,_ gmn (X, y) x m yn (4)

m,n

1
m+n=-MN

2
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in which _n (x, y) represents the number of ways of placing m horizontal (or

x-dimers) and n vertical (or y-dimers) on a lattice with square unit cell and

MN sites. Thermodynamically x,y are the activities of the x-,y -dimers re-

spectively. Physically this problem is a simplified version of a model, including

also monomers, considered in the thermodTnamics of adsorbed films and mixed

solutions [30, 31]. Fig. 1 shows a simple situation.

x

y

Figure 1

Using topological methods to enumerate the possible configurations, Fisher and

2
Kasteleyn succeeded in showing that ZMN is equal to the determinant of a two-

dimensional continuant matrix (or a two-dimensional circulant matrix if the

dimers are placed on the surface of a torus), as follows:

1
_M N
2

m=l h:l

{x 2 cos 2 m_ + y2 cos 2 n?}

:TT/(M + 1); _0 : _/(N + 1)

(5)
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suupl= transformation brings this to the form

1
_M
2 N

: rl i-IZMN e_0

m=l n=l

{c +a 2 + x 2 cos 2too + y2 cos 2nq0} (6)

in which

a2 = x 2 + y2

If we denote by Z (e) the expression following the limit sign in eq. (6), we can

write

1
_M
2 N

_ a2 x 2 y2m=l = e + + cos 2too + cos 2nq0

(7)

This is a sum which can be readily approximated by using the techniques of

Chapter III.

In the two-dimensional Ising model of a ferromagnet, the traces of certain

matrices represent the thermodynamic functions associated with the system. The

fundamental paper by Onsager [32] exhibits several such sums, the simplest

being similar to that in eq. (1),

N

'Z_N (1) :-_ cosec (k - 1/2) (_; _ = 7T/N (8)
k=l

in which N is the number of parallel chains (or rows). This sum enters the

specific heat expression for the lattice of spins. The sum can be treated in a

fashion analogous to that described for eq. (1).
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A more complicated type of sum arises in this model when correlations

between spins located at different sites are considered. Bruria Kaufman and

Onsager [ 33] show the appropriate ensemble averages to yield sums of the form

N

=- cos [2_Tak/N + ]" a = 0 1 2,''" (9)
S _ _

a k--1

in which S_k is given, for a quadratic lattice, by

_2k =cot- 1 {cosh2H [1-sinh2Hcos(2wk/N)]_sin(2wk/N)
(10)

where H = J/k T and J is the interaction energy between nearest neighbors.

Similar sums appear also in the spherical model of a ferromagnet proposed

by Berlin and Kac [34].

The theory of random walks on multidimensional lattices has lately attracted

attention because of their mathematical equivalence with certain physical situa-

tions, notably the motion of defects in crystals and the theory of spin-wave inter-

actions [35]. Extensive use is made there of Green's functions, which appear as

multidimensional sums of the type shown in eqs. (163) and (207) of Chapter III.

In a study on the electronic states of a one-dimensional crystal under an

applied electric field, P. Feuer [36 ] is led to sums of the type

N

2 _ cos nk _ ; _ = 2 w/N (11)
S N(n) =N _ }/1 + 2 _ cos k

k=0
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These sums represent the coefficients neededto construct the localized Wannier

functions from Bloch orbitals. This is a slightly more general sum than the one

in eq. (1) (for r = 1).

The reverse problem of constructing Bloch orbitals from atomic orbitals,

i.e., from localized functions centered around the lattice sites, leads to the im-

portant concept of overlap matrix A [37]. If _ = _ (r - r (_)) is the normalized

atomic orbital connected with the nucleus at the lattice point r (_)= _ a +1 1

:2 a2 + _2 a3 'thenA is defined as follows

The Born-von Karman cyclic conditions imply here that A is a circulant matrix.

If instead of the original set {_), one requires a new set {_0_) of orthonormalized

atomic orbitals, the transformation is

Lowdin and al. [6] have evaluated A-i/2 for a linear chain by using a Chebishev

expansion method. This approach of linear combinations of atomic orbitals (LCAO)

is known also as the tight-bindingmethod.

Molecular theory abounds in systems characterized by repeated units. First,

the problem of calculatingthe normal mode frequencies of molecules possessing

periodicities: e.g.,linear and zig-zag chains of atoms [5] lead to matrices

(continuant and circulant)already considered. More interesting are the calcula-

tions of the electronic structure of polyenes and aromatic molecules. Lennard-

Jones and al. [38] have treated these extensively by use of the molecular orbital

(MO) method, and were lead to continuant and circulant type matrices, the eigen-

values of which gave the_ -electron energies. Moreover, these authors encountered

sums of the form
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N

sN:2 _. i/_2 +2_Zco_kO+Z2,o:2_/(2s+ I) (14)
k--I

representing the total orbital energy.

Work along this line has been carried on by several authors [39], while more

recently Salem [40], in a study of bond alternation in long polyenes obtains sums

of the type

N

1 _ cos rkP • 0= 2_/(2N+I) (15)$2N+I (r)- 2N+ 1
k=-N ¢I + 2t 2 cos kG + t 4

In conclusion we remark that most of the authors mentioned above evaluate

the sums they obtain by passing to the limit N - co and calculating the resulting

integral. Lowdin [ 6 ] and Gilbert [ 7 ] are the exception - they evaluate their

sums exactly. Salem uses a technique of changing the order of summations, but

then expands in powers of t 2 and stops with the first term. A generalization of

this technique is the basis of the mode of calculation presented in Chapter HI.

It is to be remarked further that while the conversion of the sums into

integrals is not critical for large N, for moderate or small number of particles

this is no longer so. It is therefore important to be able to assess the corrections

stemming from finite N. Our method has precisely this advantage.
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CHAPTER HI

METHOD OF CALCULATION AND SPECIFIC RESULTS

In the preceding chapters we have presented several physical and chemical

problems that lead to the classes of matrices exhibited there. In this chapter we

discuss functions of these matrices, in particular analytic functions. Such functions

appear naturally in the statistical mechanics of the systems previously discussed

and in perturbation treatments of chemical systems. One matrix function that

already appears in classical physics is the inverse of A(_): when external forces

act on the system, knowledge of A-1 (o_2) is necessary for the complete solution of

the dynamical problem. The inverse of A @2) (or the Green's function of A) is

essential also in the method developed by Montroll et al. [8,9] for the calculation

of characteristic frequencies of lattices with defects. On the other hand all of the

thermodynamic functions of the systems previously discussed are essentially

traces of analytic functions of the dynamical matrix A (_fl): e.g., the partition

function from which all thermodynamic functions can be deduced, is defined by:

it- =_ + _ + log -e kT (1)

kT j =1 kT

or in trace form

- logZ :_--¢° +Sr_l

kT L2 kT

exp -_- (_v2)

where ¢0 is the electronic ground state energy of the system.

(2)
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The vibrational zero-point ener_T is just

E0 _ 1 h 5r {A 1/2 (c_2)} • (3)
2 kT

We note that to find the elements of the function of a matrix it is necessary to

calculate certain finite sums involving the same function of its eigenvalues. Let

us assume that F(z) is a function defined on the spectrum of A and analytic in

some neighborhood of the origin, and let kk, k = 1 ..... N, the eigenvalues of the

matrix a be all contained in the circle of convergence of F (z). Then if T is the

matrix diagonalizing A, we can write

F(n)(O)

F(A) = _ n !
n:0

F(n)(0) TA _ T -_ = TF(A) I_
n!

(4)

where

Akj = %.k Ski.
(5)

Hence

IF(A) ]kr

N

T._1= F(_j) Tkj jr •

j=l

(6)

Sums of this type are somewhat more general than the trace-type sums

associated with the thermodynamic functions,

N

j=l

F(kj) -= 5r (F(A)} • (7)
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It is of interest at this point to present alternative expressions for finite

sums of the type discussed. First the contour integral representation based on

the Cauchy residue theorem

N

2.i d--7
j=l

(8)

in which

_N(Z) -= det (A N - zI) (9)

if the k. are eigenvalues of a known matrix AN, or 9N (z) a polynomial with kJ i

for roots if no such matrix is known. The contour C has all ki in its interior.

The representation (8) is useful more for asymptotic approximations than

for exact calculation of the sums.

A different representation arises when the sum is converted into an integral.

Let the k. 's be real numbers, then one can write for sufficiently well-J

behaved functions F {k)

CO

F()_j) : f_ F(K) _(_-)_j) d_
OO

(10)

where _ is the Dirac S-function.

Assume now that interchange of summation and integration is permissible.

Then we obtain

j---I co j-I

d_. (11)

We define now

N

1 EQ(k) N
j=l

(12)
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and hence
N

IE F(kj ) N
j=l _-m

(13)

If we denote by_ (k) the number of kj's which are less than or equal to k,

it can be shown that

N

_(_) =_ H(_-_j) (14)

j=l

where H (x) is the Heaviside unit function, and

_(k) - 1 d _(_). (15)
N dk

The function Q (k) is called the eigenvalue distribution function. It is not difficult

to show also that

_(1_1) = 21_] _(k2). (16)

Later on in this Chapter we shall evaluate Q (k2) for certain special forms

of _.. The above formalism will be useful also for the conversion into integrals
J

of sums other than the trace-type ones. In the following we shall treat both types

of sums by a method which is different from both the complex and real integral

representations. Although, for the sake of continuity, explicit reference is

given to the matrices from which the eigenvalues arise, it will be apparent that

the treatment is independent of this knowledge.

3.1 One-Dimensional Sums

In this paragraph general results regarding circulant and continuant

matrices will be presented. We have seen that these matrices are associated

with problems where periodic and rigid boundary condition, respectively, prevail.

It is not difficult to write down formulas for the matrix connected with free

boundaries, and also for more general situations- the only requirement being
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that the eigenvalues have the same functional form. We shall not do this here

as the method is sufficiently well represented for the cases mentioned.

(i) Periodic Boundary Conditions

Instead of treating the symmetric case alone we shall consider here the

more general case of an asymmetric circulant matrix, defined as in eq. (116) of

Appendix E

a -- (S O S I ... SN.I)cyc. (17)

with eigenvalues

N-I 2rrjk

k k -- s ie N ; k = 0 ..... N - 1. (18)

j=0

As shown in eq. (124) of Appendix E, the diagonalizing matrix U is such as to

reduce the (m, n)-element of F (A), to the form:

[F(A)]mn - 1 F(kk) exp

N k=0 N
(19)

Therefore we consider in the remainder of this paragraph sums of the type

N E2 irk1SN=_ _1 _ F(kk) exp N
k=O

(20)

where r is an integer. Without loss of generality we can restrict r to the range

0 < r < N - 1, as all other cases reduce to the form (20) by periodicity. When

r -- 0, SN reduces to the simpler trace-type sum of eq. (7).

As it stands, the sum (20) cannot be computed unless N is small or unless

F (kk) has special features that enable the sum to be evaluated in closed form.

Using a technique which is the generalization of a method quoted in [ 6], we shall

convert this sum into a form which is more convenient for accurate calculation or

for approximate evaluation.
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Our techvAqueis based on the fact that the k 'k'S have the same functional

dependence, namely, there exists a function )v (8), which generates the eigen-

frequencies under discussion

k k = )v(_k). (21)

Here we define

N-1

_(_?) = _ sj exp(ij _). (22)
j=0

Then clearly

The form of k (8) suggests a Fourier series expansion for the function

F {_(8)}.

(23)

Therefore we shall assume that such an expansion exists and write

F{k(8)} = t Aj exp(ijS)

j=0

(24)

with

F{)v(8)} exp(-ij 8) d8 . (25)

In eq. (24) only positive j's are required since )v (8) contains only positive

powers of exp(i 8) and F (z) only positive powers of z.

Using the expansion (24), we can write

CD

j=O

N-1

_, A* exp{2_ jk }

j=o

(26)
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where the A* are expressible in terms of the A's:

A*j = /_, Aj +_N" (27)

The result in eq. (26) is a consequence of the periodicity of the trigonometric

function exp (i j G ). We note that the rearrangement of the series is legitimate

since the analytic character of F(z) guarantees uniform convergence within the

circle of convergence.

Insertion of (17) into (11) leads to

N-1 N-I

1F. N

= A*. (28)

This result shows that a finite summation of this type acts like a filter on

the Fourier coefficients of F{k(_)}, "sifting" out an infinite number of them.

In this connection a historical note is of interest: the British mathematician

Thomas Simpson discovered in 1758 [13] that if a function f(x) has the Taylor

series expansion

f(x) : E f" x_
n=O

and if

then

N- 1 ( 27rk ) 2wi rkSN(r>O ) =- 1 E f ei---- N X e N

N
k=0

SN = xr E fr+nN (xN)n"
n=O
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This is a consequenceof the fact that the sum of the roots of unity Vanishes.

Later on, DeMorgan [13] extendedthis result to the roots of x_ = -1.
2_rk

It is obvious that for ;_k -- e i-E" z, a Fourier expansion of F (z) will not be

needed in our treatment.

Returning now to the result (28) we see that the evaluation of the finite sum

is reduced to the evaluation of the Fourier coefficients and the infinite summation

of eq. (27). While this may seem to complicate matters, it must be remembered

that Fourier coefficients decrease with increasing index, by virtue of the Riemann-

Lebesgue lemma, and the convergence of the series can be quite rapid. Fre-

quently the approximation

SN _ Ar (29)

will be sufficient for computational purposes since when F (z) is analytic, the

Fourier coefficients will fall off exponentially with the index. Moreover the

approximation of eq. (29) is precisely the conversion of the sum (20) into an

integral (i.e., passage to the limit N -_ co ). This will be a particularly effective

approximation when N is large. For those problems in which N is not large

enough to warrant the approximation by an integral, the formula (28) allows one

in principle to estimate the correction terms successively.

Procedures similar to those given above suffice to discuss the important

special case when A is a symmetric matrix. We can write in this case

(S S 1 ... S M SM. 1 . .. S1)cycl " N = 2M
A : (3o)

(So sl SM SM SM-1 "'" Sl)cycl. N 2M+l.

The eigenvalues can be written then

• cos + 2 c s M cos . --)Lk = S0 + 2 Sj N
j=l
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where

i l for N : 2M

E= 2

1 for N : 2M + 1 .

The function )v (8) defined in eq. (21) is replaced in the present case by

(32)

M-1

_(_) : s o +2 Z s.j cos j_+ 2esacosM_. (33)
j=l

Then )v (_?) being an even function of 8, so is also F{)_(_) } and we can assume the

Fourier expansion:

where

1 A0 +F{_(e)) :_-

Q0

Z
n=l

A n cos n _? (34)

An:A f02" F{_(_)} cos n 8. (35)

As for the asymmetric circulant matrices, a rearrangement of the series

for F (a k) leads to

N-1

F(_k) = E A* cos
j=O

27rjk

N
(36)

with

and

co

1 E

A*>o = _ Aj+_N (as)
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Then the sum (20) for the _ of eq. (31) becomes

1 A* (q9)sN=- r" u

If the exponential in eq. (20) is replaced by the cosine term cos 2_rk/N,

eq. (39) will be replaced by

1
SN =-_- {A* + A__r}. (40)

In both cases r = 0 leads to the formula for the trace-type sum,

SN = A* . (41)

The results of the preceding analysis can be easily generalized to the ealeu-

lation of sums of the form

N-1

SN N N
k=O

with r as in eq. (20) and

N-1

_-k= E
j_-0

sj 1

(42)

(43)

are the eigenvalues of the matrix Z_÷ , called a skew-circulant in eq. (164) of

Appendix E.

The argument leading from eq. (22) to eq. (27) can be repeated with a slight

modification to yield in this case the result:

G0

j=0

SN = A* (44)

in which

(_l)J At+iN. (45)
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Similar results can be obtained for other values of r in eq. (42}. If on the other

hand the first row of A+ can be written as

I (S S 1 --. SM, -- SM_ 1 .... S1)skew_cycl " N = 2M

a÷_- (46)

(S 0 S 1 .-- SM, -- S M .... S1)skew_cycl " N = 2M + 1

then the eigenvalues are

M-1

_(2k + 1) j _(2k + 1) ML k : s o + 2 si cos + 2cs M cos (47)
N N

j=l

where

N=2M+I .

The Fourier expansion then contains only cosine terms

(48)

1 0'"A :m
77

F{k(£7)} cos n6_ d6_ (49)

and the sum

N-1

'T
k_0

F(Lk) COS
_(2k + 1)r

N
(50)

with r as in eq. (20), can be represented by the expression:

1
[A* (51)
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in which

: + (-1)J AjN

j=l

• (52)

co

A._> o : _ (-1)iA2_+JN
j =0

An analysis of the preceding exposition shows clearly that the following general

result can be stated:

From a given eigenvalue-generating function )_ (8) and a given analytic func-

tion F (z)-which is defined on and its domain of convergence contains the set of

values {_(_), 0 _< _ < 2 _}--one can construct a whole class of finite sums by

choosing N values _k ' such that e iek be the roots of an algebraic equation of

the N TM degree. Since the set of Fourier coefficients for this class of sums is

unique, the values of these sums will depend solely upon the filtering properties

of the _k 'S.

We proceed now to apply the formulas developed above to cases of general

interest. The discussion will be restricted to the asymmetric and symmetric

circulants.

(i) The Inverse h-1

The function F (z) = z-1, strictly speaking, is not analytic in the neighbor-

hood of the origin, yet the formulas developed above can still be applied if the

integrals associated with the Fourier coefficients are taken as principal value

integrals, whenever needed.
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In the asymmetric case the integrals to be evaluated are

_2rr

1 _o e -ij_ d6
Aj = 2---_ So + Sl eiO + s2 ei20 + . . . + SN-1 ei(N-l)O

27ri fc dz... z N'I
z j+l (s O + s 1 z + + SN_ 1 )

(53)

where C is the unit circle. The contribution to the integral from the pole at the

origin is the coefficient of z j in the Taylor expansion of

=- ... zN'I] -1 =_ A} p) Z j (54)[P(z)] "1 [s o + slz + + sN_ 1

j=0

In the form of a determinant this contribution is

A(p) - (- 1) j
]

(So)J+a

s 1 s o

\ k

" \ C)S \ X
12\ \

\
I \ \

\ \\ \
I \ \

\ \
I \ \
.\ \ \ \ X!

sI \ x \

\

\ \ \ \So

-s 2 s 1J

; ! (55)
s o

Unless a computer is used for the numerical evaluation of the determinant,

this expression for A(.p) is not very practical. An equivalent form can be found
l

for A(jp) provided the roots zk of P (z) are known. Suppose that P (z) has no

multiple roots (the extension to the more general case is trivial). Then we can

write

N-1

P(z) = s o -_ (1 +or k z)
k=l

(56)

with c_k = - 1/z k. In terms of the_k the value of A is calculated to be, j
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N-1 c7_+I
Aj : (- 1) j

/1\

Since the only dependence on j is through the term _+1

expression for the A*(p):

(57)

we may find an explicit

N-1

h*(p) : (_1) r _ 1
°_ +1 (58)

1 - (-_k) N

where we have summed the geometric series involved under the assumption that

I_k[ < 1.

In particular, A(_) * will coincide with A* whenever P (z) has no roots

inside or on the unit circle. There exist several sufficiency conditions for this

to happen. One condition given by Landau [14], is

' ' ' ' : Sk/S 0 (59)s 1 > s 2 > . . . > SN_ 1 > 0 ; S k

A second simple condition can be obtained by using Rouche's theorem*.

example if

Is', 1 ÷ Is' i ÷ ... ÷ Is'oJ < 1

For

(60)

then the roots of P (z) will lie outside of the unit circle provided

' ' ' (s' + ... + s' ).(I + sI + s2 + """ Se ) > e+l N-I (61)

In particular this is true if

N-1

rs;i
j=l

< 1 (62)

*Rouche's theorem states that if f(z) and g(z) are analytic within and on a closed curve C, and if

If(z) I > Ig(z)ion C, then f(z) and g(z) +f(z) have the same number of zeros inside the region

bounded by C.
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An exact result can be written down immediately for the case s k = 0, k > 3 if

it is assumed that only the pole at the origin contributes. Then the easiest way

to evaluate the A's is to use their determinantal expression of eq. (54). Using
J

the value of this determinant given for the appropriate form of eq. (15) in Ap-

pendix E, we find

A., (-1)J 1 I +v/s_-4SOS2 _ I -v/s2- 4So s2

' SJo+I ¢/s2 _ 4SoS 2 2 2

(63)

Therefore the sum

N-1 2_i rk

SN = (64)
2wik 4vrik

k=0 S O + S 1 e N + S 2 e N

on evaluating

S N --

A* of eq. (28) with the A's of eq. (63), becomes
r j

(- 1) _ 1 +/s_ -4s os 2

2s 0 N- 4s0 2 - 4s0 

s 1 -v/s_-4%s 2 1

- sI +v/s_-4s os 2

1 - 2s0 (65)

This expression has a finite, well-defined limit when N -, _.

The elements of the first row of A-_ are obtained from eq. (65) by letting

r take the values 0, 1, • • •, N - 1. These elements characterize A-1 completely

since a function of a circulant matrix is also circulant.

It is clear that if all the s k's vanish with the exception of (any) two of them,

the sum again is easily evaluated in a closed form. In some instances it is more

convenient to use a full Fourier expansion. For example if the _k 'S are of the

form:
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• 27zk 2_(N-1 ) k

_k = S0 + $1 e N + SN_ 1 e N

•2vrk . 2vrk

-- S o -t- Sle N + SN_ 1 e N

k=0,..., N-1 (66)

Then the appropriate k (8) is

k(0) = s o + s 1 e i° +ss_ 1 e-J0 (67)

and the Fourier coefficients associated with the sum

N-I -i 2_vrk

1 _ e N

sN =g L
k-0

are

2Ft

if0 ened xf
A n =_-_- So + S 1 ei---_ + SN- 1 e -i0 -_-_i zn(s I

n>0

dz

z 2 + s 0 z + SN_I)

foI ein0 d0 =__I__1 zn dz

A-n =2_-- S 0 + S 1 e i0 + SN_ 1 e -i0 s I z 2 + S 0 Z + SN_ 1

n>0

(68)

(69)

The values of these coefficients, which can be calculated exactly, depend on the

location of the zeros of the denominators with respect to the unit circle. Since

in Appendix D we exhibit an alternative way of computing such simple sums

exactly, we shall neither calculate here the integrals (68) and (69), nor perform

subsequently the summation for SN .

Similar expressions will be obtained now for the symmetric case. Let us

start with the expression (35) for

_02_T _02 ?T
An =--I cos n0 d0 =--I cos nO dO

u-I 7z Pu(cos 8)

s o + 2 _ s.j cos j0 +2e cosM0

j--1

(70)
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The polynomial PM(cos 0 ) can be factorized such that

PM(c°sO) =s o

M

-_- (1 + o-. cos 0)J

j--1

(71)

where again _ are the reciprocals of the roots of Pu (z).J

discussion to the previously investigated case of

M

_. !sjl < Is01
j=l

If we restrict the

(72)

which means I_j] < 1 for all j, then the integrals A can be evaluated by

partial fraction decomposition:

f0An : 1 _= Mcos nO j dO *

j=l P' /-_) J

=2 fl,}n_
j=l J

(73)

Hence the appropriate sum of eq. (40) can be summed explicitly

S N =

M

_- 1 1
J

j=l ('1-c_j )1/2 P'C-_j) I- {[(I -c_j )1/2 -1]/°--}"J

or.
J

A number of exact results are available also in this case.

(74)

For example if _ (0)

is of the form

*The value of this integral is exhibited in Appendix B
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/_ (75)
_) -- s 0 + 2s 1 cos (J

then again using the integra! ( 4 ) of Appendix B, we can write

An ___m

77

cos nO dO

s o + 2s I cos 0

o1
/q _4s_

(- 1)n

2
/So2 - 4s 1

o)nst _4_ +s
2s 1

I

/So__4_ - _o[
I2s 1

V/So2- 4s 2 + s o

2s I

<i

<I.

Then the first case in (76) leads to

t/,o_ __ ,o/"-,
- 4s x

+ 2s,

1 - 2sl

The second case leads to an identical form since the value of a finite sum is

independent of the mode of summation as long as no terms are neglected.

Another case which admits of an exact treatment is the following:

(76)

(77)

2rrk 47rk (78)
= so + 2s, cos -if-+ 2% cos --if-

Instead of evaluating the Fourier coefficients it is simpler in this case to

relate the sum associated with (78) to the sums associated with the eigenvalues

given byk k

2uk (79)

2

x_ = - s1 + /s_ - 4% s2 + 8 $2 (8o)

where

4s 2
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+
and _ _ = _. It is easy to see then that

SN _ 1 [S_ -S_]. (81)
X ÷ --X-

(2) Other Functions of A

We have seen that the calculation of the inverse of the general circulant

matrix already presents great difficulties. It is therefore not surprising that

the evaluation of more involved functions complicates the computation consider-

ably. Hence such cases will be best treated by numerical methods (assuming of

course the elements sj to be known). But even for numerical treatments the

general discussion above is of value, since it exhibits clearly what are the

dominant terms and therefore provides a practical scheme of computation.

For certain special cases some results can nevertheless be given in terms

of known functions. These special cases are treated below.

(i)A  i0, z,2,...

The elements of A_ give rise to the sums

N-X ( 4 iky _ 2 ir___ kSN = _ s o + s I e N + s 2 e N e N (82)
k=0

where we have assumed

_(e) = S o + SÂ e i6 + S 2 ei2_ (83)

The Fourier expansion of [_ (8)] v can be effected as follows:

(s O + sI e ie + s2 ei2e) v = so_ [1 - 2xz + z2] _ (84)

where

Sz S_o2eieX=- ; Z= (85)
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If it is true that Is2/s0 ] < 1 and Is 1 /s01 < 1, the following expansion is known

[15] to exist

(1 - 2xz + z2)" : £ C_" (x) zn

h=0

(86)

where C_ (x) are Gegenbauer polynomials with the explicit representation

b]

c_(x)=(_l)no 2(-_)( _-m)_-m m 2x)n" 2m
m=O

(87)

Therefore the Fourier coefficients of eq. (84) are

A 1 _o 2_n _ 2"--_ (So + sl eiO + s2 ei2e)v e "ine d_

v $2 $1

: _0\-q0] cz -2v s o s_------2

(88)

Inserting these values in previous formulas we obtain the sum SN

When t_ is symmetric the pertinent sums are of the form

of eq. (82).

N-I

2 k 277rk1 s o + 2s 1 cos cos _ (89)
SN N N

k=0

The evaluation of this sum proceeds as follows: we write

(s o + 2 s I cos 8) _ : (So) . (1 - 2/3cos _ +/32) _ (90)
(1 +/32) v

where/3

S 1 --, O,

is that root of the equation s 1 x 2 + s 0x + s 1 = 0which stays finite for

/( ol ,/3- + -

2_, V\2_,]
(91)
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To find the Fourier expansion we require I fil < 1. Assuming this condition

to be satisfied, we can use tables [16] to write down the result

A=± f02_rr (So + 2sl cos 0)" cos nO dO

( Y_ So . 2finF(-v+n) F(-u, -v+n, n + 1: /32)
1 +/32 ] P(-v) F(n+l)

(92)

where F denotes the ordinary hypergeometric function. Then

SN =( SO _v 1 _ ;/3r+nNF(-v+r+nN)\1+92] r(-_ o="_ Vr -+;_: f;
r_0

/3(n +a )N- r F(--u + (n + 1) N - r)
+

F((n + 1) N- r + 1)

F(-v; -v+r +nN; r +nN + 1; f12)

s_ (

r=0

+ F( _)
n---1

-v, -v, 1; /32) +

1
F(-u;-v+(n+1)N-r;(n+1)N-r+1;/32)_

J

(93)

_nNF(-u +nN) F(-v; -u +nN; nN + 1; /32)_ • (94)
F(nN + 1) J

For v = ± 1/2, these results are somewhat analogous to those obtained by

LSwdin, Pauncz, and de Heer [ 6 ] .

(ii) Exp (ra)

The sums involved for the asymmetric case are of the form:

: 1. _ "r + e N e-"'R--S N
N k=0

(95)

The Fourier coefficients are found by using the well-known expansion:

i0 _ a n ein0e ae =
/ , n!
n=0

(96)
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Hence

A
n

I r s o /,2rr

- j
0

e -in_ exp (_-s 1 e io) d0

(TSl)n e-rSO

n ! (97)

Therefore

SN = erS0 2 (Ts1)r+nN(r + nN)! (98)
n=0

Similar results can be easily derived from the above for sin (7-A), cos (_-A) and

c"h (c a constant). For the symmetric case the pertinent sums are of the form:

{(s >}1 _ 27rk 2.rk (99)SN =g exp z o + 2sl cos_ cos
k=0

The Fourier coefficients are

2Tr

An =-Trl f e_s° exp (2s 1
0

_- cos 8} cos n_d0

= e_S0 _771
0

exp {i (- 2s, iT) cos 0} cos n0 dO (100)

Using the expansion [16]

exp (iz cos 8) = J0(z) + 2

oo

F
n=l

i n Jn(z) cos nO (101)

we immediately obtain

h
n = 2e_-S0 I n (2s 1 r); n=0, 1,... (102)
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where I (x) is the modified Bessel function of the first kind. Then

::,0 {¢1,-o i
r_0 n=0

(n+l)N-r (2s 1 r) }(103)

SNr=0 -- e_rS°{Io (2s1 T)+2 _.n=l (-1) nN InN (2S 1T)}
(104)

Again the functions cos (r&), sin (TA) and crA can be evaluated by using the

results above.

4. Calculation of the Eigenvalue Distribution Function

Here we want to evaluate the function _( _ defined in eq. (12) for two cases.

For a monatomic linear chain the eigenvalues are

2_j
w2.=a + 2b cos_; j = 0, . • • , N-I (105)
J N

We need therefore the Fourier expansion of the function _ (w 2 - a + 2b cos _ ).

Following the procedure of IAghthill [17] for generalized functions, it is easy

to show, by making use of the transformation properties of the 8 -function, that

1

tbl

8(w 2-a-2b cos _)) =

0

l +2 _, cosmcpcosm_tIsin q°l m=l

a - 2tbl <_J < a + 21b I

elsewhere

In the above we have assumed for definiteness that a >_ 2 Ibl

(106)

and b < 0, the

case most frequently met in practice.* Then _0 is given as the principal branch

of the function

*Other cases can be treated with similar ease.
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a_2 - a

? = arc cos - 2-'-"b--
(107)

i.e., 0 _<? _<7T.

Writing

e =a-2lbl;
s

a_ : a + 2 Ibl (108)

the above can be rewritten as follows:

S(oJ2 -a-2bcos 0) :

+2

m=1

cosm? cos m_9

o)2 < o)2 <_ 2
s -- COL

0 et sewhe re

Performing the finite summation over j, we finally find:

(lO9)

co

+ 2 cos mN?

0 elsewhere

On comparing this result (for oJs = 0) with that of Montro11 et al.

• oj2 <oj 2 <OjL2

(110)

[11], we see

that the infinite sum represents the correction terms* which depend explicitly on

N, the number of particles in the chain.

It is of interest to note that _(o_ 2) can be also written in the form

:

0 elsewhere

£
k=--o0

S (N? - 277k)

(111)

*When used as the kernel of an integral.
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We note that the first term in the eigenvalue distribution function depends

solely on the form of the eigenvalue generating function, while the correction

terms depend also on the particular set of _k's associated with given boundary

conditions. Since the first term is the more important one we do not explicitly

exhibit correction terms for other boundary conditions.

We quote below the corresponding results for a diatomic chain the eigen-

frequency generating function of which can be written as

_ = _ , )/2_.+('(_) Oj 2 _ _ + V"_2 + COS 2 (_ (112)

Then the Fourier expansion of the function

F(_) =-8(h+(_)} + 8{k_(_)} (113)

is given by

2

77

F(_?) =

0

Icz - cz]

](_2__) 2 __21'/2 [/32 +_2-(0_2 _C_)2[ 1/2
1+2 £

m=l
cos2m_0 cos 2m_ t

for a- ]/32 + _X2t 1/2

elsewhere

- _ _2[ ]/2< (z2 < a+ I_ 2 +

(114)

with ? given as the principal branch of

? : arc cos/
(_2 _ _)2 _/32

2

Then the frequency distribution function _ (oJ2)

2N-1

_(°J2) : --2NI
j;O

[s{x.+(_j)} + s{x._(ej)}]

(115)

(116)
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is given by

( 2

177

:l 0

- + 2 cos 2mNq0

m_l

for a _ ]fi2 + _211/2 _ _2 _ _ + [fi2 + _2]x/2

elsewhere (117)

It is apparent that these results can be extended to more general situations,

the sole requirement of this method being explicit knowledge of the real roots of

the eigenvalue generating function (if such a one exists).

We conclude this section by noting that if the function F{k (8)) can be ex-

pressed as a sum of products of simpler functions whose Fourier coefficients

are known, then repeated use of Parseval formula will lead to the desired Fourier

expansion, and subsequently to the required stuns.

(ii)Rigid Boundary Conditions

In this section we treat stuns associated with the matrix

\o,,b/
\ b\a/

(118)

shown in eq. (2) of Appendix E.

Before proceeding to the actual calculations we extend somewhat the scope

of this discussion by including matrices (not necessarily symmetric) of the type

_cal

\

h 1

a \\ b2\ \0
c 2 \ \

\\\

\\ \
\\

end1 \

(119)
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where it is assumed that for all i = 1, . .., N- 1

b i c i --con st =b 2. (120)

In Appendix E the discussion following eq. (15) shows that a' and A are connected

by a similarity transformation. Because of this property we will work henceforth

with A exclusively. It can also be verified that the elements of an arbitrary

analytic function F(A') are related to those of A as follows:

[F(A')]m_ _- •

C Cn+l " " " m-I

bn+l

/2

× IF(a)Iron m>n÷l

[F(A) ]ran m = n (121)

x [F(a)]mn n >_m + 1
_m÷l " " n-I

Cm+l

Since the eigenvalues of a are

_k
_k =a + 2bcos_ ; k = 1..... N (122)

N+I

their generating function will be

k(O) = a + 2bcos 0. (123)

The elements of an analytic functionF(A) can be written as

L f c zr(m-n)k zr(m +_)k t
[F(A)] _ 1 F(kk) os cos (124)

mn N+I N+
N+l k=1
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where use was made of eq. (6) and the form of T shown in eq. (12) of Appendix E.

Assuming as before that F{_(_)} can be represented by a Fourier series

0o

A0F{N(_)}=-- +
2

n=l

An cos n_ (125)

where

F{_(#)} cos n_d# (126)

it is seen that the F(kk) result when _ is set equal to _k/(N + 1). Substituting

the value of F(kk) from eq. (125) into eq. (124), we obtain

= A° 2 Icos. 7T(m -n)k cos 7T(m + _)k I +[F(_)]_n 2(N + 1) k=l N + 1 N +

2 21 c _(m-n- j)k
1 Ai x os

+ 2(N + 1) j=l k=l N + 1

--COS

_(m - n + j)k

N+I

_(m + n - j)k
-- COS -- COS

N+I

_(m + n + j)k((127)

fN+I

To evaluate the finite sums appearing in this equation we note that they are

all special cases of the prototype sum

88



N

_skcos - N_ s ±2r(N+l)N+I
k=l

1
+- [(-1) N-l] [1-8 s,±2r(N+l) ]

2 _s, ±(2r+ 1) (N÷I)

-- (I -- _s, ±2 r(N+l) -- _s,±(2r + 1)(N+l))_s,±2r (128)

where r = 0, 1, 2, .... The use of this formula in eq. (127) results in

where

[F(A)]mn = £ IBm_ n + B.(m_n)
2

m >n

- Bin+n - B.(m+n ) ] (129)

Bj = _ Aj + 2r(N+l)
r=0

(130)

and a coefficient A_ is zero if _ is negative. The restriction m > n

by the symmetry of A (which in turn implies the symmetry of F(&) ).

is dictated

In the following paragraphs we shall give some specific applications of the

formula of eq. (129).

1. Calculation of A-1

We have already found the Fourier coefficients needed here in eq. ( 4 ) of

Appendix B. When their expressions are inserted into the definition of the B's,

the resulting series are geometric and the matrix elements can be written in

closed form as
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V 2n- i V 2(N+I)- V 2m

(A-1)mn -_---- m>n (i3i)
UV m+n 1 - V2(N+i)

where

V

/a 2 - 4b 2 - a (132)
; U = /a 2 - 4b 2

2b

2. Calculation of A", v _ 0, 1, 2, . . .

If V as obtained in eq. (132) satisfies

Ivl < 1 (133)

then the Fourier coefficients are given by eq. (92), on identifying V with fl, s o

with a and s 1 withb:

a/ y 2Vn F(-v + n)A = F(-v,

n k_J V_( - V) I_(n + 1)

-y + n, n + 1; V 2)

: 2(-b)" V"-_
F( -- + n)

r(-u) r(n + i)
F(-TJ, -z_+n, n+l;V2);n>0 ._ (134)

Then

[ Iron= -V _(---u)

r=

F(-u,-u+m-n+2r(N+l), m-n+2r(N+l) +I;V 2) x

P( -v +m -n + 2r(N + l)
X

l_(m -n + 2r(N + 1) + 1)

vm-n+ 2r(N+l) +
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OD

+ _ F(-z_,-v+2r(N+l)-m+n, 2r(N+l)-m+n+l; V 2) P(-u-m+n+2r(N+l))
Ffn-m+2r(N+l) + I)r=l

V-m+n÷2r(N+l)

(D

-ff-_ F(-v,-u+m+n+2r(N+l),m+n+2r(N+l) + I;V 2) F(-z_+m+n+2r(N+l) vm+n+2r(n+1)

r=o F(m+n+2r(N + 1) + 1)

Z F( -u+2r (N + 1)-m -n)v2r(N+l)_m_- F(-u, -v+2r(N+l)-m-n, 2r(N+l)-m-n+l;V 2)

r=l F(2r (N + 1) -m -n + 1)

(135)

3. Calculation of exp (,_A)

The Fourier coefficients are given by

An -- 2eraIn(2b_" ) ; n -- 0, 1, 2 .... (136)

Then

m>n

Im_n+2r(N+l ) (2br) +

L LI2r(N+l)_(m.n ) (2br) _

r=l r=0

Im+n+2r(N+l ) (2br)

-_--n I2r(N+l)_(m+n ) (2bT) *

r=l

(137)

We can write down also the following result for the sum

N1 _ r +2bcos 7rmk
S..

- ___ e cOSN+ 1 N+I
k=l

(138)
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We can restrict m (because of periodicity) to the range 0 < m < 2 ( N + 1). Then

• m (2br) +SN = era 0

4=1
I2_ (N+I)_ m (2br)

+ I2_ (N+I)+ m (2br) -

_=1

e ra

N+I

a)

(2br) _m, even + _ I2,__ m (2br)

2_=1 m_0 %=1

(139)

This result simplifies for m = 0 to:

-- erafI (2DT) ÷ 2 _' )t
SN,0 0 I2_(N+I) (2br -

_=1

era (140)cosh (2b_-)

N+I

3.2 Two-Dimensional Sums

In this section we present results relating to sums arising only from periodic

and rigid boundary conditions. Other cases, whenever tractable, can be treated

in a similar fashion.
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It is clear that as we proceed to higher dimensions, the computational diffi-

cultie;_ multiply. Therefore fewer specific results will be available. Nevertheless

our technique will still be advantageous for numerical calculations.

The matrices A touched upon here will be two-dimensional matrices, i.e.,

Mx M matrices the elements of which are N x N matrices. To specify the elements

of A (regarded as an MN x MN matrix) one needs four indices, or two vector

indices i = ( i, i2), j = ( ] 1' j 2). The first component of the vector index repre-

sents the row (column) of blocks in which the element is located and the second

the row (column) location inside the block.

If F (z) is an analytic function of z over the entire eigenvalue spectrum of A,

then the generalization of eq. (6) is as follows:

[F(A)]kr = _, F(Aj) Tkj _j_l

J

(ltl)

where h i are the generalized eigenvalues of A (namely, M diagonal N×N-matrices)

and 1" is the (generalized) matrix which brings A to diagonal form.

i) Periodic Boundary Conditions

In this subsection we shall consider sums arising from eigenvalues connected

with asymmetric and symmetric two-dimensional circulant matrices.

The general asymmetric case leads to eigenvalues _mn of the form:

M-I N-I

• i----N--
kmn = Sik e e

j=0 k=0

m=0 ..... m- 1; n=0 ..... n-1
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Then, using the form of T given in eqs. (212), (216)of Appendix E

= F(}_mn ) exp 77 i _ +
[F(A_]pq -_ m=0 n=0

PI' ql =0 .... , M-l, P2' q2 =0,..., N-I. (143)

Eq. (143) shows that we are concerned here with sums of the type.

M--I N-I 27ri rm 2"rri _n

- i _ _=0 F(_r_) e M e-'--_SMN MN r=0
(144)

where m,n are integers which can be restricted to the ranges 0 < m < M - 1; 0 <

n < N - 1 because of periodicity. For m = n = 0, S reduces to a simpler,
-- MN

trace-type sum. We define now the frequency generating function _ (8, _0) by

M-I N-I

_ ei (jS+k_) (145)_(_, qo)= Sik

j =0 k_-O

Clearly

The analytic function F{h(_, q0)) is assumed to have a double Fourier series

expansion

F(_(_, q_)} = _ _ Apq e i(pO+qq_)

p=O q=O
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where

27r 2"_

I fo fo F{_(8, _)) e-i(Pe+q_)dSd_ (148)Apq = 47?"2

Again, only positive p, q are considered, since 4(8, _) and hence F{k(8, _ )}

contain only positive powers of e ie , e i_ . In cases where k ( 8, _ ) contains nega-

tive powers of e ie and e__ , the full expansion must be used.

Utilizing the expansion (147) we find

27rrpF(_r_) = Apqe iT

p=0 q=0

M-1 N-1 .2_rp 2rr_q

= A_q

P=0 q=0

where

A:q -- L _-_ Ap+jM.q+kN. (150)

j =0 k=O

Again, the analyticity of F (z) insures the legitimacy of rearrangement of the series.

Insertion of (149) into (150) leads to

SMN = A* (151)
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The discussion preceding and following eq. (29) concerning the properties of

the Fourier coefficients, is pertinent also here and need not be repeated.

The general symmetric case leads to eigenvalues k r,_ of the form:

N-1 M-1

E E_'r'_ = s00 + 2 cos N.----7- + 27) cos 27rN_..___N,+ 2 , sj0 cos
k=! j =1

+4

M-I N-I M-I

EE 2Trjr 2_k E 2_jr 2_rN_Sjk COS M----_ cos N--- V- + 477 SiN cos M_mr_cos N.__.7._
j=l k=l j=l

N-I

+ 2 e SM0 cos 2_Mr + 4e E SMk COS 2_k_ 2_MrCOS

M' ' Nt mI
k=l

2_M r
+ 4E 7) SMN COS

M1
COS

27zN_ (152)

N 1

where

z

1 M' = 2M
2

1 M' = 2M+l

;7 =

"l

2
N' = 2N

1 N' -- 2N + 1

(153)

We obtain the frequency distribution function _(_, _ ) by substituting _ = 2_r/M' ;

q) = 2_/N' in eq. (152). Then
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yAoo+
I I

_- Ap0 cos p_ + _ cos qm2 A°q
P=I q=l

P--1 q=l

cos p_) cos qq_ (154)

with

A
pq

1
z

Tf 2

27r _2"rr

fo jo F{_(3,_)}cosp_cosd_d_. (155)

Then

M'-I Nl-I

F(Xr_) -- Z _ A;q cos 2zrpr 2_q_COS

M' N'
P=0 q--0

(156)

where

OD CO

A_°:4 A°°+ 2 A°'_N'+7 Aj.,
k=l j=l

0 ÷

co
co o0

A_q : "_" q+kN' ÷ AjM,, q+kN s

q>0 k=O j=l k=0

oo
co co

A*o:-_ Ap+_.,o + A+_, _.,
P > 0 j =o j =o k=l

-±
j =o k=O

P,q>O

Ap+jM t, q+kN S

J

(157)
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Then a sum of the type

M_-I N I-1 1 .2_j..2.m _.2_.._.2

SM'N' = M'N: 2 ,E F(_r'_)e-' M' e _ N'
r=0 _=0

(158)

in which m, n are as in eq. (144), can be rewritten with the aid of eq. (156):

SM,N ' = --1 A* (159)
m,n

If the exponentials in the sum (158) are replaced by the respective cosine terms,

the modified sum is given by

1 {A_ * A* + A* } (160)
SM'N' -- "_ '-m, N"-n + A_i'-m,n + m,N'-n m,n "

For the trace sum with m = n = 0, weobtain:

* (161)SM_N_ = A00 -

We proceed now to calculations with specific functions F(z).

1. The Inverse A-1

In the ", -;vmmetric case the integrals to be evaluated are

fl rr fl rr -iP0e'iqq) dt_dc9
_Paq ---- _1 e

4_ 2 M- I N- I

_, eiJ8 eikq)Sjk

j =0 k=0

1

(27Ti)2 fc, £

d(dz

M-1 N-1

_q+l zP+I 2 _-_ Sjk

j=0 k=0

zi _k

(162)
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where C' and C are unit circles in the _- and z -planes respectively. It is

obvious that even though some formal results could be written down for the

general case (e.g., a determinantal form for the contribution to A from the
pq

poles at the origin), these would have no practical value. On the other hand if

only a few of the sjk do not vanish, certain exact and asymptotic results can

be still derived. We shall not pursue this possibility here as illustrations will

be given for the more interesting symmetric case.

In the symmetric case we treat only the case

k(8, _0)= a + 2b cos t9+ 2c cos cp+ 4d cos t?cos cp (163)

where the integrals to be evaluated are given by

1 --|2,r--|2,T cos p_ cos qcpdG dcp
A =-- (164)

Pq 7z2 J0 J0 a + 2bcos 8 +2c cos cp +4dcos _cos cp

The following conditions are imposed on the coefficients:

]b] > [cl >21d[; b, c, d < 0 (165)

It is clear that one integration can be immediately performed to yield an elementary

function, and we shall do so in the sequel. Here we find it more convenient not

to use contour integrals, the analysis being simpler in the real domain. Since

for arbitraryp, q an exact result is not available, we give first the value of A00

where such a result exists. InAppendix B we have evaluated A00 for different

ranges of the parameter a. Here we exhibit only one such result, eq. (22) there:
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A°° -_ (c 2 _4d 2 V(u - 1) (v + 1) u-_ _v+ 1)

where

+ 2 Ibl _ - 2 Ibl
(167)U= ; V=

2(1_1 - 21dl) 2([_1 + 21d[)

and K (k) is the complete elliptic integral of the first kind the modulus k of which

is given by

k 2 = 2(u - v) (168)
(u - 1) (v + 1)

This generalizes results in the literature [11], including recent ones of Mathews

and al. [18] •

Appendix B also treats the asymptotic approximations of the general integral

A . For the case d = 0, exact results can be given for all A by proceeding as
Pq pq

follows:

A _ 4 cos pO cos qq_ dO d_ (169)
Pq 77-2 a + 2b cos O + 2c cos _0

Under the same restrictions as in eq. (165) with the additional condition la[ >

2( [bl + Ic[ + 2 [dt ), the following identity can be used

a +2b cos 3 + 2c cos q0
e-ax e-2bxcos6) e-2¢_ _os q0dx (170)
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Since

co

e-" _o_,/, = Jo(i "z) + 2
k=l

i k Jk(iz) cos k_ (171)

inserting (170) and (171) in eq. (169) we obtain:

foApq -- 4 po 8qO e -ax Jo(2bix) Jo(2Cix) dx

co

+ 2(1 - 8qO) _pO £q fo e-ax Jo(2bix) Jq(2Cix) dx

oo

+2(1 - _pO ) _qO ip f0 e-'XJp(2bix) J°(2cix)dx +4(1 - _po)(l + _qO ) i p+q × (172)

x _e-.= Jp(2bix) Jq (2cix) dx)

According to Erdelyi [19] , the Laplace transforms in eq. (172) can be evaluated

explicitly

fo ° e-ax Jp(2bix) Jq(2CiX) dx =

41bl 41c1 i)
2q + 1 ; , (173)

a+2lb[ +2[c[ a+2[bl +2[c

where 52 is a hypergeometric function of two variables [15], It can be shown

that the expression for Ao0 reduces to a complete elliptic integral of the first

kind, as expected from the case d _ O.
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2. Exp (tA)

For the asymmetric case the pertinent sums are of the form:

SMN

M-1 N-1 [" 2_r 2_

=-_ exp s o + t s 1 e u + t s 2 e N

r=O "_=0

+ ts 3

2wirm 2_i _ n

× e M e N (174)

and no constraints need be placed on the s 's.
J

The Fourier expansion is straightforward:

A
pq

q 1
e ts0 t p÷q s_ s_ E j! (p - j)! (q - j)! \sis2/

j=O

e ts° t p+q s p s_ _ J! (P _ J)! (q _ J)! \ sl s2]
j=o

q<p

q>P

(175)

These expressions simplify for s 3 -- 0, to

A : etSo t p+q s_ s_ (176)

Pq p! q!

and the summations involved in the evaluation of SMN can be performed for p and

q separately.

The symmetric case can be treated in terms of simple functions only for

)v(_?, q0) = a + 2b cos 3 + 2c cos q0

102



Then

et_(8'_ ) : eta e2btc°s_ e2cte°s_O (178)

and we make use of the expansion (171), such that

Apq = 4e ta Ip(2bt) Iq (2ct); p,q >_0 (179)

As in the one-dimensional case, one can extend the above results to functions like

sin sinh- .
eos(tA), eosh(tA) and cA (with e a constant), without difficulty.

4. The Frequency Distribution Function _(o_)

The sum to be evaluated here is

M"I N-1

(180)

Hence we need the Fourier expansion of the generalized function S (_ - k(0, _0)}.

Since for the asymmetric case the eigenvalues k _ can be complex, the appropriate

eigenvalue distribution function q(w) would have to be defined over the complex

plane. This is not done here and instead we treat only the real, symmetric case.

The frequency generating functionk(0, _0) here is taken to be

_(0, _0) = a + 2b cos 0 + 2c cos _0 + 4d cos 0 cos _0 (181)

with the restrictions of eq. (165).

In Appendix C the Fourier expansion of the generalized function S {_fl - k(0, _0) }

is effected. Here we present only the first (dominant) term:
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S{a -w 2 + 2bcos 0 + 2c cos g_ + 4d cos 0cos go}

t ,

4372 2 4d 2

1 K (]//(1-v) (l+u) /_v _-_

a - 2 Ibl - 2 Ic[ - 4 ]d] < o? < a - 2 Ibl + 2 Icl +4 ]d[

/( 2 z (1// 2(u-_ )1 - v) (1 +u) 1 -_ (f+u)

a - 2 Ibl + 2 Icl + 4 Idl < J < a + 2 [hi - 2 Icl + 4 Id]

- v _ -v_

a + 2 Ibl - 2 ]cl + 4 Idl < _2 < a + 2 Ibl + 2 ]c] - 4 [d[

where K(k) is the complete elliptic integral of the first kind with modulus k(k < 1),

and u,v are given by

a+2lbl -_2 a-2]b[ -o?
• (183)U z , V----

2(Icl - 21dl3 2(1_1+ 2ldl)

The expression for _(o_ 2 ) is identical in the first term with that of 5{w 2 - k(O, ?) },

as can be seen from eq. (12). This result in eq. (182) is more general than that

quoted by Montroll et al. [ 11] in two respects: 1. The addition of the mixing

term 4d cos _ cos go; 2. The constraints imposed on the parameters a, b, c andd

are weaker than those ordinarily used. Moreover this evaluation exhibits the

advantages of our method, since alternative integral representations for the _-function

lead, when mixing terms are included, to integrals which are not recognizable from

existing tables.
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ii. Rind Boundary Conditions

As in the one-dimensional case, the formulas of this section differ irom those

,, ' '" -. :ii ) • are modified. Again, itof the previous one only oec,mse the sets ' ,k

is clear that the changes will occur solely in the correction terms.

The sums treated here arise from eigenva]ues connected with Bye-dimensional

eontinuant matrices. The o_ronv_l,jo_ ennsidered are of the type

y
-r 4d cos cos:: n - 2}, cos_ - )c cos r _ (la4)

51-i N -1 M_ 1 N + 1

[F(A)I q ('M- !" (N . 1 _ _ _ 1

- rq _ : P_ - Pq2

M-1 N-1 N:I

Pl' q_ :_ I .... M; P2 q_ : 1

UtilizilBg the relation

(18s)

1
-: i.,'? x s_]2 v .:-,_

T x -- _v _, -cos {x , y_]

we see that our concern here is witl_ ::. suP, of the type

(186}

where., on acc'ouPA of.. p_,,'iod_,';i,'__*--,_ v the _i_,c;_erK _._B can be restricted, to the range<

0 !m _ 2_._ + I o 0 an _2 -gN _ i.. i"(.}r _ ::'",, S,,x:,:_re::{ucc, s to a trace-ta, pe_ sum.
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Now we assume for F{k( 8, _0))a Fourier expansion similar to that in

eq. (154), with appropriate Apq's, and define quantities Uj, Vk

M N

1 Z: -_ COS _ " V k - COSJ M+I M+I' N+I N +1
r=l _=1

(187)

The sums appearing in (187) have been evaluated in terms of Kronecker S's in eq.

(128). Note also that U j -- Uj and V_k = Vk. Then insertion of the Fourier expan-

sion of F (k_) and use of the U V_ leads to the following form for SUNj

where

S_ =_- Apq 6pq (Up_ m + Up+m) ('Vq_ n + Vq÷n" ) (188)

p--O q=O

E
Pq

1
V p=q=O

1 (189)
p=0, q>0; p>0, q=0

1 p>0, q>0

If we further define

then SUN

r,s pq pq p+r +s

p--O q=O

can be written as follows

(190)

1
: {Bm nSMN _ - , -

+B
Ill, --n

+B
133,1"1

(191)
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Since the eigenvalue-generating function _ (8 ,_) considered here is identical

with that of the symmetric case in the previous section, the Fourier coefficients

for the various functions F(z) coincide also. Hence there is no need to repeat

the results, and no particular application will be made to the sums SNN.

3.3 d-Dimensional Sums

This section is devoted to sums arising from problems in three or higher

dimensions. The sums will be over analytic functions of eigenvalues of d-dimensional

matrices. These matrices are straight-forward generalizations of the matrices

dealt with previously. It must be borne in mind that if one disregards the d-

dimensional partitioning of a generalized matrix, one is left with an ordinary

matrix the elements of which can be specified by the usual two indices. On the

otherhand if one has to keep track of the particular submatrices which contain

the element in question, the two simple indices p ,q are to be replaced by two

d-dimensional vectors p ,q the components of which take values from d appropriate

ranges. Examples of these matrices, apart from the (lattice) dynamical matrices

mentioned, are the matric representations of quantum-mechanical Hamiltonians,

where the elements are specified by several quantum numbers. This shows also

that the components pj of the vector indices are sometimes taken from a set

of N numbers not necessarily integers.J

For the remainder of this section only the three-dimensional case will be

considered. The elements of an analytic function of A are given here by

-- _ F(A k) Tpk T-' (192)IF(A)]p,q k¢
k
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where Ak are generalized eigcnvalues of A, T the (generalized) matrix which

brings h to diagonal form, and p = (Pl, P2, P3); q = (ql, q2, q3), with pj, qj

c{r_J) , • • • , rN(J) } . Inthe following the r (j) will be integers.
J

i. Periodic Boundary Conditions

Here we shall treat analytically only the simplest cases, since even for

these closed form results are generally not available.

The general asymmetric case leads to eigenvalues of the form

k
pqr

N1 N 2

2Z
j =0 k = 0

P -- 0,..., N 1

1 1 2_r_r
N3 " "_12_rJp " -_227rkq i N---_

e e e
_=o

-1, q=0 ..... N2-1; r =0 ..... N3-1

Then using the form of T given in eq. ( ) of Appendix , we obtain

(193)

2_rP(Ul-V 1 ) 2_rq(u2-v 2) 2_r(u3-v 3)NI-1 N2-1 N3-1
i i i

-N1N2Na F(kpq r) e e x e

p=0 q=O r=O (194)

Therefore we are concerned with sums of the type

N I-I N2-1 N3-1 2wipn I 2wiqn 2 2wi rn 3

1 _ _ Z F(_pqr_ e N1 e N2 e N3 (195)SNIN2N3 -- NIN2N3

p=0 q=0 r=0

where n1, n 2 , n3 are integers which can be restricted, because of periodicity, to

the ranges:
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0_<n1_<N1-1; 0_<n2_<N2-1; 0<_n3 <_N3-1.

Proceeding as before, we define an eigenvalue generating function X (8, _0, ¢)

and expandF{X( 8, _,¢)} in a triple Fourier series. The final result is

SN1N2N3 = A*ln2n 3 (195)

Here

co co co

= _,, _,, _, (197)A;IP2P 3 ApI+JN I, P2+kN2 , P3+_N3

j=0 k=0 _=0

and

27T

Aj k_ - (2_) 3

cp, ¢)} e-i(ie+k_°+_qO d_dcpd_ (198)

We have assumed _ (8, _0,qJ) to contain only positive powers of e ie, ei_ ° , e i_b and

therefore the integers j, k, _ > 0.

The general symmetric case leads to eigenvalues of the form:

NI-1 N2-1 N3-1

_--_ Z _-_. " 2"uqk 2Trr_ (199)_. = Sjk _ cos 2wpj cos -- cos
pqr N1 N2 N3

j=0 k=O 2_=0

where the Sjk _ 'S satisfy certain identities, similar to those imposed in two

dimensions. Then

F(X(0, qo, ¢)} =

co co co

Pl=0 P2=0 P3=0

COS pl _ COS P2_0 COS p3 _b (200)
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where

and

Z

PlP2P3

i

_ Pl +p2 +p3 -- 0

1
-4- Pl + P2 + P3 - 1

I

"_ Pl + P2 + P3 = 2

1 Pl + P2 + P3 >- 3

(201)

-, ffo: fApIP2P3 773 F{k(_,_, _)} cos Pl cos P2_ cos Ps¢ d_d?d¢ (202)

Hence a sum of the type

N 1-1 N2-1 N3-1

p=0 q=0 r=0

2 -2 r-3 ]
(203)

with nl, n2, n3 as in eq. (195), can be rewritten as follows:

and the A* 's are given by

1
S_IN2N3 =_ A:1"2"3 (204)

pqr

j=0 k=0 _=0

ejk_ Ap+jN1, q+kN 2 , r+_N 3 (205)
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When the exponentials in the sum (203) are replaced by the respective Cosine

terms the modified sum can be written as

+1

'ZSNINI_2 =_- ,
AS

l-a,

anl+"_'-Nl,_n2+_'N2 , Tn3 +_N 3

(206)

1. The Inverse A-1

Here we shall treat only the symmetric case for the simplest frequency

generating function _(_, _0, ¢ ):

_(G, ?, ¢) -- a +2bcos _ + 2c cos ? + 2d cos¢ (207)

The corresponding Fourier coefficients are

pq r 773

cos k_ cos q_0 cos r_b d_d_0d¢

a+2bcos_+2ccos_0+ 2dcos¢
(208)

The only exact results available are for h00 o , and this only for particular

relative values of a, b, c and d. Fora = - 6b andb = c = d < 0, the integral has

been evaluated by Watson [20], with the result

d_ d_o de _ 96

3 - COS _ - COS _0 - COS ¢ 7r2a

[18+12_- 10¢_- 7_ ×

× K 2 [(2 - {3) (v/3 -vZ2)] (209)

where K (k) is the complete elliptic integral of the first kind.
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Mor_roll [21] has generalized this result to the cased, b= c < 0 and a =

2(2[bl + [d[ ), such that

with

1 fro d_ d_o d_bA°°° - [b[ _3 (2 + Cc2) -COS 8 - COS _0 - a 2 COS

32
[v;7 + 1 - 7v_Z-l-1] K(k 1) K(k 2) (210)

-_ 4 + 3a 2
a = ; "y - a 2

1 [4-1 - VZT-3]k1 =_-

1 iv/7_ 1 +/7-3]k2 :_

(211)

andK (k) the first complete elliptic integral as before.

There exists a formal expression for A in terms of a hypergeometric
pqr

function of three variables. The result arises as follows:

A -' fdtff
pqr 773 0 0

e-a'r e-'r(2bcosO+2c cos_ +2dcos_b)

× cos p0 cos q_0 cos r_b dO dc¢ d_b (212)
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where we assume _e(a) > 0. Since for integral n

e -$_c°sx cos nx dx = 2_ i n Jn(fiTi) (213)

we obtain

Apq_ =8i p+q+_ f_ e-_r Jp(2byi) Jq(2c_i) Jr(2dTi) dt
0

(214)

The integral in eq. (214) is a Laplace transform. Its value as given by [ 19 ] leads

to

A = 8(-1) p+q+r bp cq d r (p+q+r)! x (215)
pq r

(a - 2b - 2c - 2d) p+q+r+l p! q! r!

1 1× _3 p+q+r+l; p+½, q+_, r+_; 2p+l, 2q+l, 2r+l;

4c _ 4d }a- 2b- 2c -2d' a_ 2b- 2c- 2d

4b

a-2b-2c-2d

The function _s' known as the Lauricella function, is a three-dimensional power

series. Its properties have not been thoroughly investigated and its alternative

representations, if any, are not known.

Tables for the general integral A are available for certain ranges of the
pq r

parameters which appear in its denominator [22]. The same reference gives

also asymptotic forms of A for large values of the indices.
pqr

Returning to Aoo o it can be shown that two integrations can be performed

exactly in terms of complete elliptic integrals on using the results of Appendix B

for the two-dimensional case, and this can be done even when _(_, q0, ¢ ) contains

mixed cosine terms. But so far, attempts to carry out the third integration

analytically have not been successful.
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2. Exp (ta)

For the asymmetric case we treat the sums

SNIN2N 3

f 2_rk 2_'_ t
N1-1 N2-1 N3-1 . 2_j i N--2- i N--_

1 Z _ _=0 exp ts0+tsl e' N--_+ ts2 e + ts3 eN1N2N3 j=o k=0

2_inl j 2_in2k 2_in3_

N1 N2 N3 (216)x e e e

Since there is no mixing term, the Fourier coefficients can be immediately written

down

et0fS0 A = ---- e-i(p0+q_0+rob)exp {tsI e i_ + ts 2 eiq0+ ts3 e i_b} d0 d_ d_b
pqr (277)3

ts0 tp+q+r r

p! q! r!

(217)

The summations involved in the evaluation of the sum SN1N2N3 can be performed

separately for p,q and r.

The symmetric case leads to the Fourier coefficients

A -=_
pq r 773

exp {2bt cos 0 + 2ct cos _0 + 2dt cos _b)

× cos p_ cosq_0 cos r_bd_ dcpd_b

-- 8e TM I (2bt) I (2ct) I .(2dt)
p q t

(218)

where Iv(z ) is the modified Bessel function of the first kind.
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3. Frequency Distribution Function

The remarks concerning the evaluation of the Fourier coefficients related

to A-I are pertinent also here. The triple integrals that are to be evaluated

in order to find the Fourier expansion of the generalized function.

$(w 2-a- 2bcos 0-2ccos _0-2dcos¢)

present the same difficulties.

Therefore if 4( a? ) is needed only for the conversion of finite triple sums into

integrals, this approach will not be practical for numerical work because of the

free parameter o_. On the other hand, our method is still useful.
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CHAPTER IV

LATTICES WITH DEFECTS AND PERTURBATION THEORY

Defects and imperfections in crystal lattices have been the subject of numerous

and relatively recent investigations [11]. The most widely used method for the

treatment of such lattices is Montroll's method of Green's functions, developed

and elaborated in collaboration with Potts, Maradudin and Weiss [23].

An outline of this method is presented below in connection with the evaluation

of the frequencies of an arbitrary imperfect lattice. Later on the discussion will

be specialized to the case of one isolated mass defect, so as to compare the re-

sults with those obtained from perturbation theory.

Let us assume that the dynamical matrix associated with an imperfect lattice

is

A = Ao -a' (D

where Ao is the dynamical matrix connected with the perfect lattice,while A' con-

tains the deviations of the imperfect from the perfect lattice. The characteristic

equations can be written as usual

(a-;_I) u =0 or (A0-kI-A') u =0 (2)

in which u is an N-dimensional column vector.

Eq. (2) can be rewritten as follows:

u = G_' u (3)
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G is the Green's matrix of A0 ,

G = (A0 - _I) -1 (4)

defined for all _ not on the spectrum of iX0. Eq. (3) can be useful in solving for

uby the method of successive approximations. More important is the fact that if

only a few of the A' -elements are non-vanishing, then one can find the character-

istic equation explicitly in terms of the Green's matrix elements from.eq. (3).

It is essential therefore to possess explicit expressions for the elements grj of

G. In eq. (22) of Appendix D these elements are given by

grj

S

: _ Trk Tk}
_(o) _

k=l k

(5)

in which _(k°) and T denote respectively, the eigenvalues of A0 and the elementspq

of its diagonalizing matrix T. For generalized matrices the scalar indices will

be replaced by vectors of appropriate dimensionality.

For the case of one-dimensional systems with simple A° perturbations,

the characteristic equation can be written down directly without using Green's

functions. For higher dimensional lattices, the method seems to be indispensable

for finding the characteristic equation of the perturbed lattice, even though the

exact forms of the Green's functions are not known, i.e., the sums in eq. (5)

cannot be evaluated in closed form.

It is clear that once the characteristic equation is known, the mode of its

solution is independent of the Green's function method. The same applies to the

evaluation of the eigenvectors u of eq. (2).
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In the rest of this chapter we apply second order perturbation theory to a

monatomic linear chain with one isotopic impurity, symmetrically situated, and

rigid boundary conditions.

We assume therefore

o

b\ a \
\ \

i \ \b

A 0 \ \ \ (A'.)k, _ a' 8,_, (6)-- ; -- _k,n÷l n+l

\ \

\ \
\ \

b a +1

with

a=2a-MJ;, J b=-a_M, 1
a =-eM ; e =I- M

(7)

The eigenvalues of 6 0 are

k_ 7zk . k = 1 2n + 1 (8)0) = a +2b cos 2n +2

In the remainder of this chapter we shall use the notation 8 = 7r/2n + I. To

apply perturbation theory we first bring h 0 to diagonal form by performing the

similarity transformation T given in eq. (12) of Appendix E. Then the matrix

to be treated by perturbation is

with

[] = Ho + H' (9)

a' ++ ,..n-j
sin -- sin- (10)(UO)rk ---- _(k O) _rk; 1"I_ --j n+l 2 2
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Since the eigenvalues k(k°) are simple we can use ordinary perturbation theory.

Then to second order in a' the eigenvalues k k will be given by:

hl, = a +2b cosk_- a' [ . _rk\ 2
n+l /sln'-_ ")

2n+l

-
r/k

2b (cos k_ - cos r_?)
(ii)

It is clear immediately from the form (10) of It_j and eq. (11) that for k =

2j ; j = 1, . . . , n, we obtain to all orders

=k ) = a +2bcos_; ] = 1,... n
n+l

Note that the eigenfrequencies in eq. (12) correspond also to a monatomic linear

chain of n particles with rigid boundary conditions. The result that n frequencies

are not perturbed by an isotopic mass defect situated at the center of symmetry

can be arrived at also by purely matric methods.

Returning to eq. (11) and putting k= 2j - 1; j = 1 .... , n + lwe can

write

k2j_ 1 = a +2bcos (2j - 1) _ a 1 a' 2n

n+l

r_l

cos (2j -1) _?-cos (2r-l) d?

The restricted sum in eq. (13) can be rewritten as follows
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n+l 2n+l

7", 2cos (2j - 1) _ - cos (2r - 1) _?
r=l rffil

r_j r_2j-1

cos (2j - 1) _ - cos rO

_ _ 1 _r (14)
r=1 cos (2]- 1) 8-cos_

n+1

The unrestricted stun in eq. (14) can be evaluated in closed form by using

eq. (6) of Appendix D with

I [V_- 1 _ V-.- I] l
F(k) =_-

U= v/_ 2-I; V=_+U J (15)

Then

n + 1 [V n+l + V -n-1 ] (16)F °(k) =-__£ F(_) +
U 2 U2

Substituting cos (2j - 1)3for k in F'(k)/F(k) we obtain the value of the un-

restricted sum

n

1 = cos (2j -1) _ (17)
, 77r sin 2 (2j 1) _9r=1 cos(2j -l) P-cos--

n+l

To evaluate the restricted sum on the r.h.s, of eq. (14) we have to use

formula (16) of Appendix D, this time with
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I 2n÷2 v'2n-2]
FCk) =_ [V - (18)

where U and V are as defined in eq. (15). For this function we have

F'(X) :- k F(A) + 2n +2
U2 U2

IV 2n+2 + V -2n-2]

F"(X) _ (2n+2)2-1 2_2 ] X 4(n +1)_ [v2n+2: +- F(A)--- F'(k) -
L JU2 U4 U2 U4

V'2n-2 ]

(19)

Substituting cos (2j -1)8 for _ in F"(k)/F' (k) we finally obtain

2n+l

cos (2j - 1) _ - cos rO 2

_f12j -i

cos (2j - 1)

sin 2 (2j - 1)
(20)

Collecting results we can write for _k

a I

_2j-1 - a + 2b cos (2j - 1) _ ---n+l

cos (2j - 1)

sin 2 (2j -1)

j :I,..., n +1; 8- 77
2n+2

(21)

It can be shown that the contribution to X2j_I from third order vanishes identically

and it is probably true that all odd order contributions vanish.

We proceed now to the evaluation of the eigenvectors to the same order of

approximation. These are linear combinations of the eigenvectors u (°) for the
r

unperturbed lattice. In our case the components of a_ °) are
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u(O)_ 1 sin 77r_ .

_" v_nn+ 1 2n+-"-"-2 '
r,_--1,. •., 2n+1 (22)

Then if uk is the eigenvector associated with Kk of eq. (11) and U_k its

components, we obtain on using eq. (22) and second order perturbation theory:

U_k -
2n'1 sin _-r sin r_O

1 ink_O a' 7Tk _ 2nvn+l 2b (n + 1) sin-_ coskO-eos rO
r=l

+_ sin -- 2

4b 2 _++1) 2 cos kO-_osp-_Jp=l [r=lL= Lr/k

in_

coskO-cos r

2n+l

77r
sin-- sin r_O

2

(cos kO - cos rO) 2

8b 2 \n + 1] r=l (cosk0-cos r0)2[ 2n+2

,/k .1

-_; _, k=l, .., 2n+l

(23)

All of the sums in eq. (23) can be evaluated exactly when use is made of the

results in Appendix D. We denote these sums by Sm, m = 1, 2 ..... 5 according

to their order of appearance in eq. (23). It is also seen that S1 and S 2 are

identical.

From eq. (23) we immediately find that for k = 2j , j = 1, . . . , n, u2j coincides

with u(°) . Again this result can be shown to be exact by using matric methods.2j
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We consider now the sums S for k = 2j-l, ] = 1, . . . ,n + 1. Then the
fll

sum S 3 is identical with the one exhibited on the 1.h.s. of eq. {14}, and we have

1 cos (2j -1) _? (24)
$3 =2 sin 2(2j - 1)

The sum Ss can be written as follows:

$ #

Ss = Ss _ Ss (25)

where

2n+l n

Ss = (2j -1) 0 cos r0) 2 ' Ss = (c rrr_Z
r'l r=l \°s(2j - 1) _ - cos n+l]

r_2j -1

(26)

I

The sum S s can be easily evaluated on using formula (20) of Appendix D with

F(k) given in eq. (18) above:

#

S s =
16 (n + 1) 2 sin 2 (2j - 1) _ - 17 COS 2 (2j - 1) _ - 16

12 sin 4 (2j - 1)

(27)

a;

Similarly the sum S s can be evaluated by using formula (7) of the same

Appendix with F(k) as given in eq. (15). The result is

. (n + 1) 2 sin 2 (2j - 1) G - 1
S s :

sin 4 (2j - 1)

(28)

Finally

S 5 =
4(n + 1) 2 sin 2 (2j - 1) _ - 17 cos 2 (2j - 1) _ - 4

12 sin 4 7r(2j - 1)
2n+2

(29)
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• o

The sum S 1 can be written as

1 [S,1 + ,,]S1 = _ S1
(30)

where

S 1 2n+l

r--I

cos mr_

cos (2i -I) 8- cos r_

m=n+l-_

m=n+l+2_

(31)

For 1 < m < 2n + 2 the sum in eq. (31) can be evaluated by using formula (15)

of Appendix D, with

f(K) = V 2n÷2-m ]+ V -2n-2+m

F(N) U Iv -2n+2 - v-2n-2]J >

(32)

The result is

2n+l

cos mr0 = 1 {1 - (-1) m
cos (2) - 13 _ - cos r_ 2 sin 2 (2j - 1)

r=l

r)_2j- 1

+ [I + (-I)m] cos(2j - 1)8

3

+ cos (2j - 1) m8 cos (2j - 1) _-2(2n + 2 -m) sin(2j - 1)mG sin(2j -1)_

(33)

Ifwe assume _ < n + 1 ,then both values of m in eq. (31)satisfy the restric-

tion 1 <m<2n +2 for whicheq. (33)is valid and we can write for SI:
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f1
SI = _I-

2 sin 2(2j - 1) (
(-1) n+1-_ + [1 +(-1) n+I-$] cos (2j -1)

-2(n + 1) sinW_2 Jr; -1) sin(2j -1)_cos(2j -1)_ ;"} _<n+l (34)
2 J

/f

For _> n + 1, the sum S 1 becomes

2n+I

,, _ (-1) r cos pr0 (35)$1 = cos (2j -1) 0- cos r0
r--1

r_2 j - 1
J

where

p=L-n-1.

This sum can be readily evaluated by using formula 05) of Appendix D with

f(_) = Vp + V'p

fF(_.) U [V 2_+2 - V -_-_]

(36)

The result is

S'1'=
2 sin 2(2j - 1)

{1 - (- 1) p + [1 + (- 1)P] cos (2j - 1)

-2psin(2j -1) pO sin (2j -1) $-cos(2j -1) pGcos(2j-1) 0} (37)

Finally combining eq. (37) with the result in eq. (33) (for m = _ -n- 1) we obtain
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S 1 =

2 sin 2(2j - 1)
(- I)_-_-I + [1 + (- I)_-n-I ] cos (2j - I) 8

2(n + 1) sin_(2J -1) sin (2j -11 8cos(2j -I) _8_ " _>n +I+

2 j
(38)

The last sum to be evaluated is S4, which again can be decomposed into two sums

1 [S_ + "] (39)S4 = _ S4

where

L r= 1s; rJ2,-,

cos mr_

(cos (2j - i) 8 - cos rS)2

m=n+l-4_

m=n+l+_

(40)

The sum in eq. (40) can be written down by using formula (19) of the Appendix

with

f(X) = V 2n+2-m 4- V -2n-2+m 2t
fo r 1 _<m _<2n + (41)

F(X) : U [V 2"+2 - V-2"-2 ]

and

f(,k) =V _ +V -m

F(X) = U [V 2n+2 - V -2n-2 ]

for

2n + 2 <m <4n +4 t
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The results are:

2n+l

V-'
/_..

r=l

r/2j -1

cos mr0

[cos(2j -1) O- cos rO] 2
_- 1 {2 [(_ 1.)m

2 sin 4 (2j -1) 0

1] cos(2j -i)0

- [ 1 + (- 1) m] [1 + cos 2 (2j - 1) O] + (2n +.2 -m) 2 cos m(2j - 1) 0 sin 2 (2j - 1) 0

+ 2(2n+ 2 -m) sinm(2j -1) Ocos(2j -1) 0 sin(2j - 1) 0

1
---costa (2j-l) Ocos 2 (2j-l) 0-

2

cosm(2j -1) 0

3 sin 2(2j-1) 0

[4sin 2 (2j- 1)O+

15 cos 2 (2j - 1) 0 - 4(n + 1) 2 sin 2 (2j - 1) 0])
+

; l<m<2n+2 (43)

and

2n+l

2
r=l

r_2j -1

(- 1) r cos pro 1
Z

[cos(2j - 1) O-cosrO] 2 2 sin 4(2j-1) 0
2[(- 1) p- 1] cos(2j-1)O

- [(-1) p+ 1] [l+cos 2(2j-1) 0] +2pcos(2j -1) Osin(2j-1)Osinp(2j-1)O

1
_ p2 cos p(2j - 1) Osin 2 (2j -1) 0 +=-cos p(2j -1) Ocos 2 (2j - 1) 0

2

where

cos p(2j - 1) 0

3 sin 2 (2j-1)O

[4 sin 2 (2j - 1) 0 + 1S cos 2 (2j - 1) 0

- 4(n + 1) 2 sin 2 (2j - 1) 0]}

1 <p = m- 2n - 2 <2n and m > 2n + 2.

(44)
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On using these results with the appropriate values of m from eq. (40), and

inserting in eq. (39), we obtain

S4 = [(_1) -+1-__
2 sin 4 (2j - 1) 8

I] cos(2j-l) O- [(-I)_+I-_+I] [l+cos2(2j-1)8]

+ 2_ (n + I) sin _z(2j - I) sin2 (2j - I) 8 sin _ (2j - I) 0
2

+2(n+l) sin7r'2_? _ _1) sin(2j -1)Scos(2j -1)Ssin6(2j-1)8_ ]
2 J

and

; l<2_<n+l

(45)

S 4 =

1

2 sin 4 (2j -1)8

-1] cos (2j -1) 8- [(-1) 6-n-1 +1] [l+cos2(2j-1)8]

+ 2(n + 1) (2n + 2 - _) sin 7r(2j - 1) sin 2 (2j - 1) 8 sin _ (2j - 1) 0
2

+2(n + 1) sin vr(2j -1) sin (2j -1) Ocos (2j -1)8 cos6(2j -1)0
2 ;n +1 < 2_< 2n +1

(46)

Returning to the perturbed eigenvalues of eq. (21), we remark that using the

techniques developed here one can obtain

2n+l

_, _k = (2n + 1) a - a' ---5r (A0 -A')
k=l

(47)

where _2i are as in eq. (12) and _2i-1 as in eq. (21). This shows that in this

order of approximation the sum of the approximate eigenvalues is equal to the sum

of the exact eigenvalues of h 0 - a'.

The approximate perturbed frequencies of the linear lattice are obtained from

the equations
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k2j_l = O; j = 1, • . • , n + 1 (48)

with k2j-1 from eq. (21). All of these are quadratic equations in j except for

the particular case n=2r, s = 1, 2, . . . ,whichleads for 2j - 1 =n+l to the

particular frequency

+WT'+1 +
(49)

In all other cases we solve for oJ2 to second order in _, choosing those solutions

of the quadratic equations resulting in real o_Vs:

1 _(2j - 1) ("_++ 1/1

I +--cos c 2
_2 • 4a _(2j - 1) E 2 2n + 2 (50)

2j-I M sin2 4(n + 1) +-_++1 + _(2j - 1)

1 + cos 2n ÷ 2

Eq. (50) shows that the perturbed frequencies will be decreased or increased with

regard to the unperturbed ones, according to whether c < 0 (a heavier impurity

mass) or e > 0 (a lighter impurity mass). This is in agreement with general

theorems of Rayleigh [24] concerning the effect of additional constraints on

arbitrary vibrating systems.

It is of interest to note that if we put 4a/M -: _2L (WL is then the top of the

frequency band) and take e > 0, one of the frequencies in eq. (50) will emerge

above WL as n becomes large. This can be seen by considering w22n+1 :

--_COS_ _ 2
2 2 cos 2 77 c 2 2n + 2

(z2n+l : WL 4(n + 1) + _ +
n + 1 1 - cos 2n + 2

(51)
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Proceeding to the limit n _ _ in eq. (51)we find

_2n+l = OJL

1"I---.o0

(52)

This is the frequency of the "localized" mode, and has been obtained here

directly from perturbation theory, in contradiction to statements that this is

impossible [11]. Montroll & al. have shown [8] that the exact localized mode

frequency can be obtained by proceeding to the same limit from the original

eigenvalue equation. Their result is

2
a) L?

(53)
2 - _2

The discrepancy between eqs. (52) and (53) to second order in c is due to a

difference in boundary conditions.

131



APPENDIX A

EQUATIONSOF MOTION FOR TWO- AND THREE-DIMENSIONAL

RECTANGULAR LATTICES

1. Two-Dimensional Lattices

1.1 Free Boundaries

Let us denote by

a_ ,m

,m

the displacement of the particle located at the site _a 1 + m a 2.

for particles not situated on the boundary, the equations

(1)

Then we can write,

d2us }
M ,m _ {U_+l,m -- 2U.._,m Jr U..__ l,m

dt2 0 a'

÷ {U'_L_,m+I -- 2 U pt/,m + U_,m_l )

I')/ ) {U'_+l,m+l -- U_,m + U'_-l,m-I

2

/

(2)
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in which _ = 2, . . . , N1 - 1; m _- 2, . . . , N2 -

a = a I at = ,. ; _l i; a I , /3 -- a 2 -- a 2

7 = a 3 + (a 3 - a3)" -- a 3 4
2

a 1 + a_

: al a 2
(_3 - a'3 _

If we write

1, and where

(3)

=U/_./ , m ,In

the eqs. (2) can be put in the reduced form

eiO_t (4)

AUk +B[U_,+I +U_ ] +C[U_ +U_,m_l]
,m ,m --1 ,m ,m+l

+ D [U_+l,m+ 1 +U__l,m_ 1 ] +E [U__l,m+ 1 + U_+l,m_ I] -- 0
(5)

where

/

/2(a +/3' + 2y) -Ma_ 2
A

\ 0

B= ; C= ; D= ; E=

_ , _ _.y _)i

(6)

In writing down the eqs. (2) use was made of eqs. (60) and (61) for finding the

appropriate force density tensors A, B, • • • , E •

One can write down the equations of motion for particles on the boundary in

a similar fashion. These will differ from eqs. (2) since a smaller number of

neighbors is involved. Here we shall only incorporate results in the dynamical

matrix.
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It is not difficult to find the dynamical matrix if one adopts the particle

labeling shown in Fig. 3 of Chapter I. Using this one-dimensional labeling and

the reduced equations of motion, one obtains the dynamical matrix exhibited in

eq. (62) of Chapter I, with

=A+B+D+E

=A+C+D+E

_ =A+B+C+D+2E

_=A+B+C+2D+E (7)

andA,B, . .. ,E as ineq. (6).

1.2 Rigid Boundaries

With the same notation as above, the equations of motion for interior particles

are as in eq. (5). The equations for marginal particles are obtained by using

eq. (2) and the observation that a rigid wall, by definition, cannot move; i.e., its

displacement vector u is zero. The changes obtained when the appropriate u's

are suppressed, have been incorporated in the dynamical matrix for a monatomic

lattice as shown in eq. (78) of Chapter I.

1.3 Periodic Boundaries

Again for interior particles the reduced equations are those shown in eq. (5).

The periodicity of the boundary conditions imply that there are no marginal particles.

For instance, the particle labeled 1 in Fig. 3 of Chapter I has as immediate neigh-

bors the eight particles labeled there 2, N1 + 1, N 1 + 2, N1, 2N1, (N 2 - 1) NI + 1,

(N2 - 1) N1 + 2, and N 2 N 1 . The resulting dynamical matrix for a monatomic

lattice is shown in eq. (93) of Chapter I.

2. Three-Dimensional Lattices

The unit vectors E , _, _ and the force constants associated with the 26

immediate neighbors of the model described in § 1.3 are given below in three groups.

135



1. First Neighbors " "

_ _ C_ t _ _ CLI!

{k, - k) _**'a 1

(j, -j }--_%

{i, - i) +'*'%

i
(k, -k) -*-.- a 2

(j, - j _-.--_'_

n

{i, i} "*"*"a 2

It
(k, k )-',,-,- c_3

2. Second Neighbors

a2J + aak

a23

-a2j +a3k

a23

a2j +a 3 k

a23

a2 j - a 3 k

a23

a 1 i +a3k

a13

-a 1 i + a3k

a13

a I i -a3k

_113

a I J +a2J

a12

/3

/33

/33

/32

/32

/_2

g

- asj + a2k

a23

a3j + a2k

a23

a 3 j - a 2 k

"::q2 3

a s j + a 2 k

a23

-aai +a 1 k

a13

a 1 i + a 3 k

a13

a 3 i - a I k

a13

a 3 i + a 1 k

a13

-a2i+alj

a12

z;

z;

z;

#
/33

Q

I

/32

#

/32

i

z;

i p;

i p;

i _

ts

ol

-j /32

-J

-j Z'_

-3 9;

k Z;
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- a I i + % j

a12

a 1 i + a 2 j

a12

a 1 i - a 2 j

a12

a2 i + a I j

a12

a2 i - a 1 j

al 2

a2i + alj

a12

k

k

Above we have used the definitions

apq - d_a 2p + a 2"q, p, q = 1 , 2 , 3 (8)

3. Third Neighbors

The eight third-nearest neighbors are equivalent with respect to the central

particle on which they act, and therefore only three force constants appear: y,

y', 3/" associated with t, _ , q, respectively.

a1 i + a 2 j + a 3 k - a2 i + a1 j - a1 a s i - a2 a s j + a_2 k

_I a12 812 a

2 k
a 1 i - a 2 j + a 3 It a 2 i + a 1 j - a 1 a 3 i + a 2 a 3 j + a 12

a 812 a12 a

2 ka li-a 2j-a 3k a2i +a lj a la si-a 2a 3j +a12

a a12 lt12 fl

2 k
ali + a2j -aak -a2i +alj alaai + a2aaJ + a12

a a12 a12 a

- a 1 i + a 2 j + a s k a 2 i + a 1 j a 1 a 3 i - a 2 a 3 j + a2 2 k

a a12 a12 a
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E _ n

" +a_j-a ak a 2i+a lj - a 1 a 31 + a 2a 3j +a12 k

a a12 a12 fl

2 k-a li-a 2j +a 3k a 2i-a lj a la ai+a 2%j +a 12

a a12 fl12 a

2 k
ali + a2J +a3k a21-alJ -alaal-a2a3j +a12

D

a ill2 a12 a

Here a12 is as in eq. (8) and

a_ -1 +a2 +a3

Just as in the two-dimensional case, the equations of motion for particles

not on the boundaries are the same for all boundary conditions involved. To

write these down, we denote by U_mn the 3-dimensional displacement vector of

the particle located at the equilibrium position _a 1 + ma2 + na 3 and introduce the

time-independent vectors U,

n_mn : U_mn _iwt (10)

For a monatomic lattice the reduced equations of motion read

_C/_mn + gl (U_-I mn+ U_+lmn_ + 82 (U_m-1 n + U'_rn+l n)

+B 3 (U_m_- 1 +U_+I)+C 1 (Ug-1 m-_ _ + U,_+I m+l n ) + C2 (U/_-I m+l n + U'{_+I m-1 n )

+C3 (U_-I mn-1 +U_+I mn+l ) +C4 (U_-I mn+l +U_+I ran-1 ") +C5 (U_rn-1 n-1 +U'_rn+l n+l ")

+C 6 (U,_m-1 n+ 1 +U_rn+l n-l) +D 1 (U._-lm-i n- 1 +U_+lm+ln+l +D2 (U_-lm+l n-1 +U_+lm-I n+l )

+D 3 (U__I m+, n+ 1 +U_+I re_in_l" ) + D4 (U__I re_in+ 1 +U_+l m+l n_l') = 0
(11)
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The 3 × 3 matrices B1 , • - - , I)4 are Lhe appropriate force density tensors

preceded by a (-) sign and are given as follows

# el

-B 1 =diag(_ 1 a I al);

f

• . _2") ;_ B2 = drag(a_ _2

f M

_B3 =diag(a 3a 3a3) (12)

a_ (- 1)r+l al a2 _ , /_ a2 (- 1)r al a2

/31 1)rala2 a21/31 1)r+lala2 a_ _) +_ _-
-C r = _ - a_2

r = 1,2 a22 0 0 0 0

-C
Ir

r=3,4 2 0 (- 1")r ala3 /

/32 0 0

2
ai3 (_ 1)r+l ala3 0 a 3 ]

-C
r

r=5,6 O 0

_ o a2

a23 0 (-1)r+Xa2%

+ _ diag (0 0 I) (13)

+

l la3/

a 2 o (_ 1)'a

o
' O- 0 +

+a_s (_l)rala3 0 a_ /

I!

+/3 2 diag (0 1 O)

2
_3 a3

(- 1)r÷la2a ÷a2---_
a2 I (-1)'a2a_3

¢#

+ /33 dLag (1 0 O)

(14)

(- 1") r a2 +

(15)

-B
r

r=l,2

ala2
a_ (--l')r+1

2

=J_- /(- 1)r+l ala2 a2

a2 \ ala3 (- l)r+l a2as

a 2

t a2a2_ (-XV'ala2
+ i).+, ala2a2 a_a2

2
a 2 a_2 a2 (- 13' a2aaa12

-- 81fl3 12

(_l)r÷l aZa3 } +7____' _ l_'ala 2 a21
a212 0

a2 / o

-_i_2 \

(-1) r a2a3a122}

ah /
(16)
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-I} Y
r

r = 3,4 a2

+_

a2a_2

(-1)rala2

I _ ala 3

_ i 2 (-l)¢+iala2 ii

(- l)ral a 2 - ala 3 a 2

2 (_1),+I ' 1),+I a,2a_ a_a_l +_ - alfl 2 .

(_ 1)_+la2a3 aa2 0 0 0

t 2a _

a 1

-l)rala2a g

a I a 3 a2 2

(- 1)ral a2a2

C- 1)r a2a3a122

a,a3ap2\

(- 1)ra2aaa_2 /

/ (17)

The matrix A in eq. (11) is given by

3 6 4

-A:2 _ Br +2 _ Cr +2 _ Dr + MJI

r=l r=l rffil

(18)

The number of distinct force constants in this model is 21. For a cubic unit

# I

cell this number reduces to 9, since by symmetry a 1 = a 2 = a3; a 1 = a 2 = a'3;

.... : fl = fl ; fi' = fi' :fl';and /_1 = /Y2 : fi_3al : a2 : a3 ' /_I 2 3 I 2 3

The dynamical matrices for the several boundary conditions are obtained

without much effort by using the eqs. of motion (11) and by adopting, instead of

(_, re,n), the one-dimensional labeling of particles shown in Fig. 5 of Chapter I.

The matrices are exhibited in the appropriate sections of the same chapter.
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APPENDIX B

EVALUATION OF THE INTEGRAL

cos p_ cos qq) d_dq_

a +2b cos 8 + 2c cos q_ +4d cos Ocos cO

We consider first the case p = q = 0, when an exact result can be given.

We proceed to integrate first over 0.

To perform this integration we define

A = a + 2c cos q); B--b + 2d cos cO. (1)

Then

a +2b cos 0 +2c cos cO +4dcos 0cos _ _-A +2Bcos 0 (2)

and the first integral to be evaluated is

_0 ?r

I = d0
A + 2B cos 0

(3)

The value of I is given in [16] where different parameters are used. Our

needs here require that we give all possible cases in a different form for the

more general integral In:

_0 Tr

I =- cos n0 d0 =
" A + 2B cos 0

141



77

/A 2 _ 4B 2

7T

2/A 2 - 4B2

CA - 4B 2 - A s gn A'y"

\

A;S gn
2B sgn A ] IAI> 2 IBI

I(jA2-4B2-At_' _B - (jA2-mB2+At_1- 2B , IAI<21BI_

(In this case the integral exists only as a principal value)

(4)

where

:_+ 1 A > 0
Asgn \ -1 A<0 •

(5)

Then

77 sgn A IAI > 2 IBI
/A 2 _ 4B 2

0 otherwise .

(6)

We assume now that the following conditions are satisfied by b, c, and d:

b, c, d < O; Ibl >- I_1 > 2 Idl. (7)

Then it is clear that B < 0, and we have to consider the two possible cases for

all go: i) A < 0; ii) A > 0. The case A= 0 can be obtained as a limiting value

from either i) or ii). If A vanishes for some go's, the same treatment can be

given for the subintervals where the cases i) and ii) are pertinent.

i) A<0

Here the conditions IAI > 2 IBI and 0 _<go< _ imply

or using (7)

- (a + 2c cos go) > - 2(b + 2d cos go) (8)

+ 21bl
cos go > (9)

2(Icl - 21dl)
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Let us define now

a+ 21hi
u 2(Ici - 2]dl) (10)

The remaining integral will not vanish only if u < 1 since -1 < cos _ < 1. This

condition places a restriction on the possible values of the parameter a.

Then

= - 77 "i _ dQ)A00
J0 ¢/A2 _ 4B 2

(11)

The substitution x = cos _ in eq. (11) yields

dxA°° : - /(1 - x2) [(a - 21ci x32 - 4()bl + 2Jdl x) 2]
(12)

where the limits of integration will be determined by considering the two pos-

sibilities: u > -I or u < -1.

(i) u < -I

+I

- 77 dx
Aoo = (13)

2/Ic12_41dl 2 , -/(l _ x2) (v - x) (u - x)

and

a - 21bJ
v --- (14)

2(Icl + 2ldl)

The integral in eq. (13) can be transformed into a complete elliptic integral

of the first kind if the location of v with respect to the interval [-1, 1] is given.

For definiteness let us assume that v < u. Then a substitution prescribed by

Erdelyi [15 ]

x : u -I - 2u sin 2 ¢ (15)

1 -u - 2 sin 2
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leads to the result • .

1 I,°,
,/1_121,_- 41"121ulv/(l" -"3" (--1 _,,). x 1 -u). (- 1 - v'), /

where K (k) is the complete elliptic integral of the first kind of modulus k.

(2) u > -i

Again assuming v < u, we have the subeases v < -1 and v >

the integral A00 is given by

fu 1

___ dx

A°°= - 2v/Icl :_ 41d] 2 /(1 - x2) (v - x) (u - x)

.n .¸

/1¢12- 41dl2

f

_/2(u- v) "2-_-- - ; v <- 1

1 K /¢(_-u)(.1 +v)/.
d(1 -v) (1 +u) v) (1 +u) '

ii) A> 0

Here the conditions IA]> 2 ISl and 0 < _ < n imply

-1. Then

v > - 1 (17)

a + 2c cos _ > - 2(b + 2d cos _) (18)

or using the inequalities (7) and definition (14) we get

cosq) <v. (19)

Hence if v < -1 the integral will vanish and two subcases have to be con-

sidered: (1) -1 <v < 1 and (2) v > 1.

(1) -1 < v < 1

The substitution x = cos _0 in eq. (11) yields in this case

V

__ dx

A°°-- 2/Icl _ 41dl 2 , /(.1 _.,5,) ('x- v,) ('x _u,)
(20)
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• • As before we assume u > v. The final result will again depend on whether

u > 1 or u < 1. Performing the appropriate transformations we obtain

77

Aoo = <
/tcl 2_ 4[dt 2

(2) v> 1

/(1 -v) (1 +u) v) (1 +

/

1 K (1/(1 + v) (u - 1)_
\

d2(u - v) \V 2(u - v) f ; u > 1

(21)

A similar procedure produces the result

Aoo x 77 _/ +1

2/[cl 2 - 4 [d[ 2 J_,

dx

/(1 -x 2) (x-v) (x-u)

1 K 2 (u - v) ) (22)

/icl 2 _ 41d12 v(1 + v) (u - 1) (1 + v) (u - 13 /

We return now to the general integral A , for which an asymptotic approxi-
pq

mation is required when both p and q are large. We follow here Weiss et al. [41]

who, in a different context, have evaluated a similar integral by making use of

certain asymptotic results of Duffin [42], The argument is based on the remark

that the main contribution to A comes from the neighborhood of the stationary
pq

point of the denominator, located here at ( _ = 0, _ = 0). Expansion of the

denominator around this point leads then to

A _ cos p_ cos q_ d_ dcp (23)pq
a + 2b + 2c +4d- (c + 2d) q)2 _ (b + 2d-dqfl) _

This can be written also as

'_fo _ cos qq_ cos IX_ d_dq_ (24)Apq ,-_ C + DO2
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with . .

C---a-2(Ibl , I_ ,-2tdl) +(Icl * 21dl) _

D-= [bi + 2 idi -[dl _p2

(25)

The range of integration over _? can be taken as (0, co) with an exponentially

small error, since we assume p to be large:

f f cos pO dO (26)d_ cos q_
Apq C + I)0 2

We consider first the case sgnC -- sgnD, for all cp's near _0 = 0. This implies

a > 2 [bl + 4 [dl when eq. (7) is used. The inner integral is then an ordinary

Fourier cosine transform and from Tables [19] we find:

;o_ d_c°sqq° 7r _F_ ( _f_}hpq _ D 2 exp - p

=--Tr j cos qcp exp _p dq_.
2 0 _zC--fi

(27)

Since q is large we expand this result once more, this time in the neighbor-

hood of _ = 0, and extend the integration over (0,c0):

in which

_0 Q3

cos qq_

Apq -_- R + S q)2

_/a - 2([bl + [c[ + 2ld[) .

V [b I + 2 [dl
G --

exp {-p [p + crqo2] } dqo (28)

a Idl + lbcl

2(Ib[ + 21dl) a/2 [a- 2(Ib[ + Icl + 21dl)] 1/2

R : [(a-2([bl + Icl +2[dl))(]bl +:.'ldl)]l/h

(Icl +2id[)(lb[ +2ldl)- [dl[a-2([bl + Icl + 2ld[)]
S-

R (29)
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We assume now S > 0.

[19] :

Then the integration in eq. (28) can be carried out

._ _ e-PP e_R/S -q Rc'RTgErfc
Apq 8 v/R-S

+ (30)

For q _ co the dominant term is the first one in the square brackets.

The case S = 0 leads again to a well defined result. Since originally we

have considered values of _ only in the neighborhood of the origin, we disregard

the singular case arising from S < 0.

We still have to consider the case s gn C ¢ s gn D, for all _ near the origin.

This will occur whenever a - 2 (Ibl + Icl + 2 ]dt) < o. Then the inner integral in

eq. (26) exists only as a principal value and we obtain

foA _ __77 cos qq_ sin p

Pq 2 ¢- CD
d_. (31)

Expanding the functions J- C7D and _/-C]) around the origin _ = 0 and as

before letting the upper limit of the integration go to infinity, A can be written
pq

as

cosq_ sin pip' -cr'_02] d(p (32)
hpq _ --_ R' - S'(p 2

in which

p. =¢2( Ibl +ibllCl++ 21dl)2Idl -a

• #
aldl + Ibct

2(Ibl + 21dl) 3/2 [2(Ibl + I_I +21dl)- a] '/2

R' : [(2(lbl + I_I +21dl)-a)(]bl +2tdt)]_/2;

S#__

(lbl + 21d1)(Icl + 2ldl) + (2(lbl + Icl + 2ldl)-a)ldl

R' (33)
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The integral in eq. (32) can be evaluated in the sense of a principal value by

considering the integral of the function

e iqz sinp[p' -_'z 2]

z 2 _ 0.2

where a 2 = R' IS', along the contour shown in the figure.

-a 0 a

The final result, obtained from residue theory, is

Z [772 . R' p' - o-' . (34)-,_ slnq sin p
Apq 4
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APPENDIX C

FOURIER SERIES EXPANSION FOR

_(a - off + 2b cos _9 ÷ 2c cos _ + 4d cos 6) cos _)

In the following we adapt the one-dimensional procedure of Lighthill [17] for

expanding a generalized function in a Fourier series, to the two-dimensional case

and apply this on the function of the title.

Setting

_(a -o_ 2 + 2b cos 6) +2c cos W + 4d cos 6) cos W) =

the Fourier coefficients will be defined by

(D

Amn e im8 e in_p (i)

m, n------c0

CD CO

Amn _ 14712 _-co dq)e-inq)Y(2-_) f-co d6)e-ira8 U <_>×

× 3(a-_ +2bcos 6) +2c cos <0+4d cos 6) cos _)

where the unitary functions U(x), V(y) have the following properties:

(2)

2_-_ U(x + m_) = 1;

m_----(_ n _---(x)

V(y + nv) = 1 (3)

for all x, y, and

U(x) = 0 for Ixl > 1

U(x) + U(x -1) -- 1 for

V(y) :0 for l yl > 1

V(y) + V(y - 1) : 1 for

O<_x<_l

O<_y<_l

(4)
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Let us denoteby __±the rea! roots of the equation
r

a-_z 2 + 2c cos q_ + 2(b + 2d cos q_) cos _ = 0 (5)

considered as an equation in 8. Then

8±r = f _b + 2 r_
-q; + 2r_

r=0, _+1, +2,...

where q; is taken as the principal branch of the function

1 0.)2 -- a - 2c cos
_ = cos-

2(b + 2d cos qO

On the other hand the transformation properties of the S-function lead to the

representation

8(a -c- 2 + 2b cos _ + 2c cos _ + 4d cos _ cos q_) :

(6)

(7)

Inserting eq. (8) in eq. (2) and performing the integration over 8, we obtain:

(8)

co

_I I .Amn 4w2 2[b + 2d cos q_[
co

£ IU(_: h e-imO+r _(__) e-im0r ]

+U

.=-o. \2_/ ]sin G+_I [sin _:1

(9)

Using now the form (6) of 8 ± and taking account of the summation formula
r

(3) for U (x), the sum in (9) becomes simply

2 co s m_b .
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Therefore

00

A - 1 _ dq_ cosm_ e-in(p V (_) "m. 47r2 [b + 2d cos qg[ [sin _b[
(10)

The function of _, the nth Fourier coefficient of which is to be evaluated in

eq. (i0), is now an ordinary function and its Fourier coefficients are defined in

the usual way (Lighthill[17]). Hence

frr cos m_b e_i nq9A - 1 d_0
mn 47r2 _-_r I b +2d COS q_l Isin¢l

_0 _

1 cos rn_ cos nq_ dq_ . (11)
2_ Ib+2dcos_0[ Isin_l

There exists a restriction on the integration over _, since the assumption that

the principal branch of (7) is to be taken, namely 0 < _b < 7r, leads to a condition

on _:

- 1 < _2 _a_2ccos _ < 1. (12)
2(b + 2d cos _) -

To find the limits of integration over _, we must assume something about the

parameters a, b, c, d (the range of values of o,2 will follow automatically). We

make the following choice

a > 2 Ibl + 2 Icl + 4 [dl; ]bl >_ lcl > 2 Id[; b, c, d < 0 (13)

which represents the situation most frequently met in practice.

for cos _ in eq. (12) and using eq. (13) we obtain

v<cos _p<u

Then solving

(14)

with

a - w2 + 2 Ibl
U -= ; v-

2(Ic-2tdl)
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Since the largest possible range of cos go is -1 _< cos _ < 1, we have to con- .

sider the positions of u, v relative to the interval [-1, 1] A detailed analysis

of the possible cases (under the assumptions (13)) furnishes the following re-

sults (a change of variable cos _ = x is implicit below):

A

mn

1 Jv dx
27T 2 ¢_ - x 2

_ALJ dx
2772 1 ¢/1 _ x 2

u

1 dx

27z2 1 /i- - x 2

in which

f n(X') ;
__ mt

__ fm,n( x);

__ fm,n (x);

a-21bl-21cl-4]dl < _2 < a-2lbl +2lc[ +4ldl

-l<v<l<u

a-21bl +21ci +41dl <w 2<a+21b] -21cl +41dl

v<-l<l<u

a+21bl-21cl+41d[ <_2 <a+2lbl +2lcl-41dl

v<-l<u<l

(16)

finn(X) =

cosn(cos-lx) cosm o:,-: ' -a-2cx
2tb + 2dx) ]

Ib + 2dxl sin cos-' -_(_ + 2dx) /

cos n (cos-1 x) cosm os -1 -a
2(b + 2d×) /

/Icl _ 4 Id[ 2 /(x - v) (u - x)

(17)

We note that a change in sign of m or n leaves Amn invariant and hence the

Fourier series for the _ -function will be a double cosine series. The theory of

elliptic integrals [15] shows that with fmn(X) as in eq. (17) the integrals Amn

in principle reducible to a linear combination of the three complete elliptic

are

integrals, if a transformation to standard form is effeeted. For small values of

m, n this can be done without much difficulty, but for large values it is more

practical to find for Amn asymptotic approximations.

We give below the explicit form of A00. In the evaluation we use the appro-

priate transformations prescribed by Erdelyi [15].
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A00

The ranges of w2 for which (18) is valid are given in eq. (16).

We proceed now to find asymptotic expressions for A
mn

three cases: (1) n < m > > 1; (2) m < n >>1; (3) m _, n >> 1.

and consider the

Since A has different forms in different ranges of _, we discuss below

only the first integral in eq. (16) which can be written as follows:

corm - 2tclI 2(Ibl _-21_ cos _)/d_
mrl

V(cos _ - v) (u - cos _)
(10)

_cos-lv

= Jo
2rr 2 /c 2 _ 4d 2

where

-l<v<l<u.

We see that I has a branch point singularity at cos _ = v in the denominator
mn

and it is desirable therefore to use an approximation procedure which removes

this singularity. Such a procedure is provided here by the stationary phase

method.

Case I: n < ra > > 1

Here we consider the integral Jm. '

• cos -I v

Jmn - 1 l g(cp) e imf(M) d_o

/c 2 _ 4d 2 Jo

The two other integrals in eq. (16) can be treated similarly.

(20)

153



in wb2ch

a-_2-2]c! cos
g(rn_ = COSrlq9,_, ; f(q_) = cos -I (21)

V(cos _0- v) (u - cos _0) 2(Ibl + 2 Idl cos ¢0)

Note that Iron = 1/2 s2 Re {Jmn}. The function f (_) has a stationary point at

= 0, and we obtain:

a - w2 - 2 Icl (a - off) dl + [bc[
f(o) -- cos -1 ; f"(o) = -

2(Ib[ +2]dl) V'c 2 -4d 2 d'(1 -v)(u - 1) ([bl +2 Id[)

(22)

It can also be easily verified that the function g(_) has the property

lira g(_) - g(o)_ lim g'(_0_____)< co . (23)

q0-_O f'(_) q_-_O f"(_)

Moreover, the function (g(?) - g(0))/f' (?)has no singularity at cos _ = v and

therefore is well-behaved throughout the interval of integration. Then all the

conditions necessary for the application of the method are satisfied, and we find

Jm. = (c 2 - 4d2) 1/4 [(1 - v) (u - 1)]1/4 2
(24)

The result in eq. (24) reflects the fact that sgn f"(0) = -1 and that the stationary

point occurs at one end of the integration interval.

Finally

/Ibl +21dl cosm cos-'2(_b _ +2]d[i] +sinm os-' 2(i_ :21
I =

mn

4 mCmC_CZ(a -w 2) ldl + Ibcl (c 2 -4d2) 1/4 [(1 -v) (u - 1)31/4

+ o(_). (25)

For this order of approximation the result does not explicitly depend on n.
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Case 2: m < n >> 1

Here we first make a change of variable:

COS (_--
a-J-2Jcl cos

2(Ibl + 2ldl co_ _)

Then with this new variable, the integral I becomes
mn

I
ms

1 f c°s-I va

I
v/b 2 4d 2 _ 0

cosmGcosn Icos-1 a-J-21bl c°s8 )

/(cos 0 - v') (u' - cos _)

in which

(26)

d_?

(27)

and

a-off-21cl a -w2 + 21cl
v' --- , u' - (28)

2(Ibl + 2ldl) 2(Ibl - 21dl)

-1 <v' < 1 <u'.

The result follows immediately since now n has the role of m in the pre-

vious case also with respect to the form of the integrand. Then eq. (25) will be

valid for this case too, when an appropriate identification of the parameters is

carried out.

Case 3: m _ n >> 1

The author has been unable to find a meaningful asymptotic expression for

this case by the stationary phase method. The method of steepest descent is not

helpful either since here it becomes identical with the phase method.
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APPENDIX D

PARTIAL FRACTION DECOMPOSITION AND SUMMATION OF FINITE SUMS

Let F(k) be a polynomial of degree N, and f(_) one of degree M < N.

that F(h) has j distinct roots _k with multiplicities Pk ' such that

Assume

F(k) = FN

i

--_(_ -- _k )pk .

k=l

(1)

Then it is well-known that the following decomposition exists and is unique

j Pk

f(k) - fM _U, + _---_ _--_, Crk

F(_) FN N (_. _ _k)r
k=l r=l

(2)

where Crk are given by

Crk -

1 dp k - r

(Pk -- r)! d_ pk-r
_=_'k

(3)

For simple roots, all Pk = 1 and the formula (2) becomes

N

F(a) F N N %. _ Xk
k=l

(4)
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with

ft'k \
- \,_kl (5)

In the sequel we shail have use only for the simpler case (4) with the further

restriction M < N. Several formulas are of particular interest:

F'()v) = Z 1
(6)

By repeated differentiation, eq. (6) yields

N

Z ' ., o 1.
(n - 1)! dk n-1 \F(h.) ] k=l (X - h.k)n --

The result in eq. (7) can be extended by analytic continuation to all real n,

the 1.h.s. of eq. (7) being transformed then into an appropriate fractional deriva-

tive [43] of logF()v).

These results suggest the possibility of their validity also for functions other

than polynomials, e. g., functions possessing a discrete infinity of zeros which

satisfy certain conditions of convergence. We shall not pursue this subject further

here except for the following, well-known example:

Let F(k) = sin k. Then formally

+CO

sin k:TT (k-rrn) (8)
n=-eo
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and

F'(k) =cot k= _ 1F(_) _ - _n
n------CD

(9)

A rearrangement is performed to produce convergence with the final result

G0

cot k = 1 _ 1--+2k
k k2 _ Tr2 n 2

n:I

(10)

otherwise obtained from complex function theory.

If the kk 'S are the characteristic roots of a matrix AN, then eq. (7) gives a

formula for evaluating the trace of (A N -,kI)-% F(X) being the characteristic

polynomial of AN

F(X) = {a N-kI ] . (11)

The previous treatment can be extended in still another direction. Consider

a sum of the type

N

: ' CkX - k k

kgr

(12)

To evaluate this sum we define a function S(1) (_)

when k--. k :
1"

which coincides with S( 1)
r

N

Ck Cr f (_) CrS(1) (h-)= k-k----_-_-_-: F(k----_ - )_--_'- "
k=l r r
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The last result is obtained by substituting for the unrestricted sum from

eq. (4), with M < N. S(1) (_) can be rewritten as follows

F(k)
f(k) -C r hl _"

S(1) (k) = r (14)
F(k)

It is to be noted now that S(1) ()_) becomes an indeterminate expression of

the form 0/0, when _ -" _r • This is so because of the form (5) for the coefficients

C . Using the L'H6pital rule repeatedly we find
T

S_') = f'(k..._____)_ f(kr)F"(kr) (i5)

F'(k r) 2[F'(kr)]2

A particularly simple relation is obtained for the case f (k) = F' (k) :

N

S(1 ) -: _ 1 = _1 F"(kr) (16)
k -)_k 2 F'(_r)

k=l r

k_r

The evaluation of sums of higher powers

N

k_-i (X - kk)n

kgr

(17)

cannot be done simply by differentiating (15) or (16) with respect to _r ' since

F' ()_ _ ), F" (_ _) depend on _ _ not only through their argument but also through

their coefficients. It is much simpler therefore to use again the same procedure

as above. We illustrate this for the sums (17) with n = 2, S(r_) .
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We have to evaluate the expression

[k_l C u C_ 2t

S (2) -= lim (_

r _._ (_ - _k) 2 (_ : _,)

=- lim

_-k_ IF(K)] 2

rF(k) ] 2

f' (K)F(k) - f(_.)F°(_.) + C r L____[.___]
(18)

Again the limit process leads to the indeterminate form 0/0 and we make

use of the L'Hopital rule several times to obtain:

f' (k XF" "_ [F"rJ (r) f(_r ) (_r) ]2

s_2)- f"(_'r)+
2F'(Kr) 2[F'(kr)] 2 4[F'(k )] 3

f( r)F (_)

6 [F'(kr)] 2

(19)

For the case f (k) = F' (K) we obtain the simpler expression

1 : _ 1 F'(Xr)
k=l (Xr--Xk)2 F (k r) j 3 F'(Xr)

k_r
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For powers n >_ 4, the formulas become quite complicated. In Chapter IV

the results in eqs. (16) and (20) are used to evaluate certain perturbation sums.

Since one seldom considers perturbation approximations beyond the fourth order,

the form of S_n) for arbitrary integral n is not needed.

The results in eqs. (16) and (20) can be extended to the functions discussed

in the paragraph preceding eq. (8). Thus if again F(k) = sin k and in eq. (20) we

take )_ = 0, then
T

1 1
_2k2 3

k---m

or

k=l k-2 = T

a well-known result, here following immediately from

F'(0) = 1; F"(0) = 0; and F" (0) = - 1.

In connection with applications below and in Chapter IV it is important to note

that if the polynomials F()0 and f(k) are known in closed form and if the roots

kk are explicitly known also, then the formulas (4), (6), (7), (16) and (20), give

closed form expressions for the corresponding finite sums.

We proceed to apply some of these formulas to the exact evaluation of one-

dimensional sums related to Green's functions of matrices appearing in the text.
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The Green's matrix associated with a given matrix h is by definition the

matrix G

G (_) _ (6 - _I) -1 (21)

If kk and T denote respectively the eigenvalues and diagonalizing matrix of A,

then the elements grj(_) of G are given by

rrk  -Jl
grj (_) : _k - _

k=l

(22)

where we assume _ not to coincide with any of the eigenvalues of h.

It is readily seen that the sum in eq. (22) is of the type exhibited in eq. (4),

with M < N and Ck _-Trk Tk_ . If a polynomial fri (_) can be found such that

frj (_-k)

Trk Tk_1 - (23)
F' (_k)

where F (_) is the characteristic polynomial of A, then

f_j (_)
grj (4)- (24)

F(k)

To illustrate the procedure we consider the Green's functions associated

with a monatomic linear chain with fixed ends.
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The dynamical matrix of this system is of the form shownin eq. (2)of

Appendix E . Inserting in eq. (22) the L k and T,_ there given, we find

f e(r - j)k _(r + j)k

N COS COS

1 _ N+I N+I

grJ(L) N + 1 k_-I a-L + 2bcos_k a-k + 2bcos--_k

N+I N+'I

r, j = 1,... , N

(25)

Eq. (25) shows that we have to evaluate the sum

N

S(m, N) - 1 ZN + 1
k=l

7rmk
COS

N+I

7rk
L- a- 2b cos__

N+I

(26)

Now eq. (7) of Appendix E gives for the characteristic polynomial of h

_N(k) = (- 1) N bN+ 1

vN+I - v-N- I

U
(27)

with

U-: v/(k- a) 2 -4b 2 ; V =-
k-a+U

2b
(28)

It is not difficult to verify that if we take F(k) and f (k) in eq. (4) as follows

F(L) = U2 lgN(L) ; f (L) = VN+l-m + V -N- l+m (29)
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where for the present 0 < m <N + 1 ,then

: _mkCk = f(_k) --1 cos__ ; k = 1 .... , N (30)
F'(;_k) N+ 1 N+I

and

C±= f(S±) _ (+1) m * (31)

F °(_+) 2(N + 1)

where

_± : a +- 2b. (32)

Finally we can write

S(m,N) : 1 VN+l-m + V-N-l+m _ 1 F 1 + (-1)m 1 (33)

U VN+I _ V-N-1 2(N + 1) Lk- a- 2b k- a +2bJ

Since m' = N + 1 - m satisfies 0 < m° < N + 1, eq. (33) will be valid also for

m', with the result:

7zmk
N (--I)k COS

S'(m, N)- 1 _ N+I = __1 V _ + v-m
7zk U VN+ I v-N-1N + 1 k=1 _-a-2bcos_

N+I

2(N + 1)
I 1 (- I)N+I-_l-a- 2b + _--'_+2"bJ

*These coefficients are related to the polynomial U2 in eq. (29).

(34)
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The range of m in eq. (26) can be extended now to all integers by Using eqs. (33)

and (34).

For m = 0 we obtain from eq. (33)

N

1 _ 1 _ 1 X- a + _i VN+I + v-N-I (35)
N + 1 // ' _k N + 1 U 2 U V N+I -V -N'I

k-_l _-a - 2b cos_
N+I

It is easily seen now that

-gri : <

S(r - j, N) + S(r + j, N)

r+j<N+l

S(r - j, N) + S'(r + j -N - 1, N)

N+ 1 < r + j <2N

(36)

Other sums with closed form expressions can be obtained from (33) and (34)

by addition, subtraction or proceeding to appropriate limits with the parameters

involved. For instance, in the sum (33) the left hand side can be regarded as the

Riemann sum associated with the integral

lf0 7T

cos mO

- a - 2b cos 6_
d_

and letting N _ (" we obtain the value of this integral on the r.h.s. The value will

depend on the position of V with respect to the unit circle.
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We also remark that these results will be valid, if noneof the denominators

in the sums considered vanish, regardless of the nature of the parameters. If

a, b were operators (e.g., matrices), the sole requirement for validity would be

that these commute.

In principle the preceding treatment applies to finite sums in any number of

dimensions. However, in practice, the application of these results is limited by

the fact that the explicit forms of the appropriate polynomials are not known.

In most cases one summation can be performed exactly but the rest have to be

treated according to the methods of Chapter III.
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APPENDIX E

MATRICES ASSOCIATED WITH PERIODIC SYSTEMS

Most of the material to be presented in this Appendix, while well-known, is

rather scattered throughout the literature. Moreover the presentation there is

frequently fragmentary, partial results being given as needed for specific appli-

cations. Also most of these results are obtained by determinantal methods

which do not yield easily explicit expressions for the eigenvectors. For this

reason the treatment to follow is done mainly by matrix methods, as these allow

us to take into account more conveniently the various symmetries involved. The

matrices to be subsequently listed are those met in the text together with some

variants and generalizations which, to the author's knowledge, have not been

published elsewhere. Each one of the matrices presented is accompanied, when-

ever possible, by its eigenvalues, eigenvectors and characteristic determinant.

The matrices will be classified according to the dimensionality of the

problem from which they arise.

Part I. One Dimensional Matrices

1. Continuants

These matrices belong to particular subsets of the class of Jacobi matrices,

the latter being defined by

al bz 0 /

CN- 1
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(i) Simple Continuant

This matrix is defined by

A N =
la b 0)/'"b. "., "b

NNN \0 "a

(2)

Its elements can be written in the form

(hN)ii : b 8.,_1,i + a 8ij. + b 8i, i -I ; i, j = 1, • " ", N (3)

The characteristic polynomial is the determinant

_N (X) -_ ]A N- X I I (4)

It can be easily verified that _N (k) satisfiesthe recurrence relation

= - b2 JgN 2 (5)_N (a-X)_N_,

The solution can be found by putting 19N =x N and solving the quadratic equation

in x that results. The solution is

...... IQa 2 1_ - ( a - K- J(-a 2k)2 - 4 b2) N +11
_N (X) 1 _ )_+/( _K)2_4b2 + 1 -__ "

/77-27 :

This can be written in a more symmetrical form as follows: (6)

vN+I v-N-I

iON (%.) = (-1) TMb N+I - (7)U

where

U -= _/(N-a) 2 -4b 2 ; V =
k-a+U

2b
(8)
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Various representations canbe given to _N(_) when certain relations are

imposed on a, _ and b. For instance, if one can write

then

a-k= 2bcos _0; 0 K _0< 7T

_N (_) = (--1)N bN sin (N + 1)
sin _0

(9)

sin [(N+ 1) (cos- 1 x)]
The polynomial

sin (cos-1 x)
of the second kind.

is known as the Chebishev polynomial

The eigenvalues _k of AN can be immediately found from _s (_) = 0 by using

eq. (7):

_k
_k :a + 2bcos_ ; k : 1 ..... N (10)N+I

The eigenvectors x k

in the eigenvalue equation

: (Xlk" • ", XNk ) Can be found by putting xjk :A k _J

(AN--_k I) • x k : 0 (11)

and solving the resulting quadratic equation in _.

The normalized eigenvectors thus obtained are the columns of the matrix T

which brings AN to diagonal form:

: __2_ sin77jk
Tjk (12)

VN +1 N+I

T is a symmetric orthogonal matrix, T- 1 = T, such that

with

T-1 AN T = A N (13)

(AN)jk = _k _jk (14)

AS T does not depend on the elements of AN, the simple continuant matrices

commute, since all of them canbe brought to diagonal form by the same similarity
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transform_,o . In spite of this property, these matrices do not form a group

with respect to multiplication since their powers are not simple continuants°

(ii) Asymmetric Simple Continuant

Let A N be here given by

a b 1 0 /

AN = cl a \ ""bN_ (15)
\\\\ \ 1

O\ a
c N - 1

where the b i ,c i satisfy the relation

bic i : b 2 for i : 1,''', N-1 (16)

In particular for b i = c i (complex conjugate), A N
will be a hermitian matrix.

The eigenvectors of this matrix are the columns of the matrix ST, with S a

diagonal matrix the elements of which are

Sll : (ClC 2 "''cj_ 1 bjbj+ 1 "''bN+l) 1/2

and T is the matrix given in eq. (12).

The eigenvalues are

(17)

_k
L k :a +2bcos--; k=l, "'',N

N+I

The characteristic polynomial (or determinant) is as in eq. (7).

(18)

(iii) Generalized Continuant

If one inquires what is the matrix with eigenvalues of the form

_k : a0

N

j=l

rrkj
aj cos_ + (-1)J a N " k = 1, "'" NN+I +t ' '

(19)
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and with the diagonalizing matrix T of eq. (12), one obtains the following-inter-

esting result:

A N --

a0 al---

ao x k
\

Symmetric

\

!

I

I

I

a!
\

_a0 /

a a 3- - _

a 3

I /

I /
I /

a
N

/

\a,,÷:

/

__a.. aN,l\
/ •

/

/Symmetric
/

/

(20)

This matrix can be decomposed as follows:

where

&CO) = I
N

N+I

AI_ = E aj A (j)
j=o

0,, 1 O)

• &(1) = "-, \x
' Ix ` .,, t

0 "1 _)
(II110

. A(N+I)'" =_

/

1 / 0

(21)

&(J ) =

2

j-2

? "';..0_.101-_6 s jj

_ 11 0

0

1..

0

)i

,oI- /
_ 2 /

; j=2, ° " "_ N

(22)
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Not all of these matrices are independent, in fact

A(N+I-j) = - A(N+I) A(J)

t*

N

j =0, "'',-7; N even

j =0, ...,_,N-1. Nodd
2

(23)

The number of independent matrices is (N/2)+2 for N even and (N + 1)/2 + 2 for N

odd.

An important particular case is obtained when we put a. = 0 for j = 3 .... , N + 1 :
J

with eigenvalues

A N =

a0 -a2 al a2 x 0
\

ill.., ao. ".. ?2
x \

a 2 . . a 1

.. a0 a0 -

0 " "al"a 2

(24)

wk 27rk
k = a0 + 2a 1 cos_+ 2a 2 cos._ (25)N+I N+I

k=l,''',N

The determinant of _N- _- I

by writing

[A N

Using the identity

with _N given in eq. (24) can be easily evaluated

N

- :T-T (xk -
k=l

COS _ _2_k _ 2 cos 2 _k
N+I N+I
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and the form (25) of kk, we can write

_k a 2 + 2b 2 cos-k k - _. : a 1 + 2b 1 cos N+I N+I

where

b- Cb2-4c(a-2c-_) . b+¢b2-4c(a-2c-K)
a 1 -- , a 2 -

2cv5- 2cv5-

b 1 = dc ; b 2 = fc-

Then the characteristic determinant is

]a N - _ I I = _N(1) (4) _ON(2) ()k)

in which the _(i) (k) are given by eqs. (6) or (7) with a - _. replaced by a i and

bbyb i .

(iv) Alternating Continuant

Let A N have the form

\I
v \

u \

\b

(26)

where the last term on the main diagonal is v for N even and u

Accordingly, we treat these two cases separately.

for N odd.
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(I) N = 2n

One can write the following decomposition for h2.:

u+v b _ /i2\ x
N x

b \ \ 0
\

\ \ \

A2 n = k N \ \ k + U_- V

\ \ \"b0 \ \
\ k

b u+v
2-/ \

-1
\

\
\

\1

o\

- l/

(27)

We apply the similarity transformation T of eq. (12) on _2n ' with the result

T -1 T = A° u - v (28)
A2n 2n + -7- R2n

where

and

\

u + v rrk
2 + 2b cos 2n + 1 2Bug (29)

(30)

The matrix given by eq. (28) belongs to the class of matrices

(x_ x2\\\ O/ ( Yl)O/Y2
Z2n -- + / /

X 2n/ Y2n

It is not difficult to prove that a similarity transformation P brings

{Z} defined by

(31)

Z to the

form:

p-i ZP=
Z (2) 0

\

N

\\Z(n )i

(32)

where P is the permutation matrix

Pkj
= _Sj,2k_l; k = 1, . . . , n

L 8j 2(2n-k+l)' k = n + 1, • . • 2n

(33)
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and

Z(k) :

The eigenvalues of Z2"

Xk
Y2n-k+l

are then

; k=l,. • • _ n (34)

X k + X2n-k+ 1
+_

2 ¢( Xk - X2n-k÷l'_2_ ] + Yk Y2n-k+l
(35)

Using the above results we find for the eigenvalues of A2n

_(A) u +v + + 2b cos
2 2n +

k _ l_ • • • _ n

(36)

+ _, + _, . h- The eigenvectors of A2,and these appear in the order _i ' k2 .... n"

are the columns of the matrix TPS, with T given by eq. (12), P by eq. (33), and

S is the matrix

S( 1 ) /
s = s(. (37)

"-.S(n)

in which S(k) is a 2 x 2-matrix diagonalizing the matrix A(k) ,

A(k) =

I2 v _rk

-- +2b cos 2n +1

U --V

2

u+v

2

u_v 1_(2n + 1 -k
__ + 2b cos 2n + 1

(38)

The characteristic polynomial of A2" can be shown to have the form _2n (_)

if a - k is replaced by V(u-k)(v-k) in eqs. (6) or (7)•

177



o .

(2) N = 2n + 1

Making a decomposition similar to eq. (27) and following the same procedure

as above we find that the eigenvectors of A2n+l are the columns of the matrix

TPS, where T is given by eq. (12), P is defined as

_j,2k-i; k = 1, • • • , n + 1
Pkj = "¢ (39)

Si,2(2n+2-k); k :n + 2, • • • , 2n + 1

S is the matrix

/sl ° /S(2)

(40)
S -- . s(n)

1

where S (k) is the 2 x 2 matrix diagonalizing the matrix A(k) ,

A( k ) =

/u +v _k

---_ + 2b cos 2n + 2

U --V U +V

2 2

2

__ + 2b cos k
2n+2

(41)

The eigenvalues are

)22b cos 2n + 2

k _ 1_ - • • _ n (42)

_'2n+l : U

.. x:, .and their order is _1 ' " ' n' _2n+l

The characteristic polynomial of A2n+l can be found by using the recur-

rence relation

I A2n+l -_II +b2 [A2._ 1 -hi : (u -X) 192.(X)
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where 192n(k ) is the characteristic polynomial of h2,

subsection. The solution is

described in the previous

]A2n+l - kI] = (- 1) n (u - X) b 2n
" _2k (M

E (_ 1) k
k=O b2k

(44)

Performing the summation in eq. (44) by utilizing eq. (7), we obtain

fT:

IA_,,+, - _II : _v )_ 192n+,()Q (45)

where 19_n+1(k) is given again by eq. (7), with a -k replaced by ¢(u -k) (v-M.

(v) Alternating Continuant Generalized

Let _2n+l be the matrix

4

_2n+l =

b

v c 0
\

c u X

x \ \

\ N N
N \

\ \\b
\ \

0 b v c

c u

(46)

To find the eigenvalues and eigenveetors of this matrix we make use of a

decomposition of the eigenvalue equations, first employed by Born [25], which

is of some independent interest. Let the equations mentioned be

(h2n+l - hi) -x : 0

where x is a 2n + 1-dimensional column vector.

We rewrite the eq's (47) as follows:

/b

(-(u-?OI n'x ° :- c\,

0

\
\

x \
\ \

\C

o).
\b

X e

(47)

(48)
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t\, \

\ \

(v-_) I x ° = \,, \ x °" _ CX2n+i

\o , \

b

/o\
°../ (49)

(U - _ X2n+l -- - CX2n

The n-dimensional column vectors x ° , x e are defined by

(50)

Inserting the value of x °

xt
x 3

X 0 = . ; X e =

X2n-1/

Ix!/
x 4

2n

from eq. (48) into eq. (49), we obtain

(51)

)2 _ c 2 - (u - ',_ (v - _'_

hc

0

I) 2 , c 2 - (u - 'O (v - _,) bc 0

\

\ \
-. \ "-.

\ \b2 "_
\ _ c 2 - (u - \) (v - _,3 be

be b 2 - (u - X) (v - 4)/
\i/

(52)

Using eq. (50), we finally obtain:

I_ /5\ " 1

\ 0/5 a \
\ \ \

\ \

0 \ "/3
\ \

\/3 \a

• X e =0 (53)

with

a = b 2 + c 2 - (u - _) (v - _); /5 = be (54)

The matrix appearing in eq. (53) is a simple continuant and therefore equat-

ing to zero its known eigenvalues we get n quadratic equations for _ :

b 2 + c 2 - (u - )_) (v - _) + 2bc cos ---
7rk

-0; k = 1, • • • , n (55)
n+l
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We have found in this manner 2n eigenvaluesof A2.+1;

_+ _ u + v +_ + (b- + cos
K 2 2n+2

(56)

For b = c these eigenvalues reduce indeed to those given in eq. (42). Also we

have found for the components of x_:

and

±

x e : sin--Trjk ," j, k = 1, • • • , n (57)
jk n+l

-1/+ "
}vk -u

b
\

c \ 0
k

\
\

\N
0 \ \

\
c

•_; k = I, • •., n (58)

The remaining eigenvalue is easily seen to be equal to u,

with the eigenvector

42,+1 = u (59)

" X2k,2n+ 1 = 0; k = 1, • • • , n
X2n+l ---- (60)

k• X2k+l,2n+ 1 = ; k = O, . • • , n

Note that the eigenvectors we found have not been normalized, but the normaliza-

tion (if needed) presents no difficulties. From the mode of solution it is seen

that the characteristic polynomial of A2n+l is given by:

t42.+, -hi[ : (u-k) ton(k) (61)

in which tOn(h) is as in eq. (6), with a- k replaced by b 2 + c 2 - (u-k)(v-k).
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For the matrix of even order t_2= ,

/u b

/b v
\

\c
\

\
A2n --

\ o

c
\

\

\ \

\ \

\ \ \

N \ Nc
\

N \
C U

b

\

\

(62)

no analytic results are available, since the eigenvalues cannot be explicitlyfound

for bJc.

(vi) Variants of the Continuant

(1)

_N _-

a+b b
\ 0

b a \
\ \ N

\ \ N
\ \ k

0 \ xa b
\

b a+b

(63)

Using methods similar to those employed previously for the simple contin-

uent, we obtain the eigenvalues

7rk
= a + 2bcos--;N k =0, . . . , N- 1 (64)

and the normalized eigenvectors as columns of the orthogonal matrix T

Tjk = COS j - _" -_-

kJO j = 1,. •., N (65)

1

TJ O-
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Note that all matrices h N of this type commute as they are brought to diagonal

form by the same similarity transformation.

The characteristic polynomial is

]_N -- kI] = (a - 2v + 2b) _N-1 (N)

where igN_1 ()v) is given by eq. (6).

(66)

(2) a-b b
\

b\ a\\\ 0

A N = \\ \\\\\ (67)

\\ \\b

0 \\b a a- b

The eigenvalues are

_j
k --a +2bcos--;

J N
j -- 1, • •., N (68)

and the diagonalizing orthogonal matrix T is

Tkj :_sin zr(k -N1/27 j

j_N

The characteristic polynomial is given by

k--1,...,N (69)

[AN- kI[ =(a -k-2b) tgN_l(k) (70)

in which 9N-1 (k) is again as in eq. (6).
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• °

(3)

A
n

/a+b b \

" ° /
b a \

\ \ \
\ \ \

= X \ \
X

\ a b

0 \\b a -b/

(71)

The eigenvalues are

k. = a + 2b cos _7(j - 1/2),. j = 1,
J N

• • • _ N (72)

The eigenvectors are columns of the orthogonal matrix T

]/_ _(k - 1/2) (j - 1/2)Tkj = COS N

k,j =I .... ,N

(73)

The characteristic polynomial is

[/l N-hI] =IgN(X) -b 2 I_N_2
(74)

(4)

a+b

b

± \
A N =

0

b\

a
\

\

\

\
\

\ \
\

a

\
\

b

o \

b

a

(75)
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Eigenvalues

= a + 2b cos

k_ = a + 2b cos

_(2k - 1)

2N+l

2_7k

2N+l

k=I, • - ° _ N (76)

The diagonalizing matrices T ÷, T-are orthogonal

2 77(2k - 1) (2j - 1)
T ÷ _

kj COS
d"2N + 1 2(2N + 1)

and

Tk j _- 2 sin 77(2k - 1) j

¢_2N + 1 2N + 1

k,j --1, ..., N (77)

la_ - _II = (a - _ ± b) _N_l(k) - b 2 _N_2(K) (78)

(5)

2n ----

/a+c b

b aN c 0N
N \

c\ N \

x \ x
0 c a b

b a+c

(79')

The elements on the first upper and lower diagonals are alternatingly b and c.

This matrix is associated with a monatomic linear chain with free ends and

alternating spacing constants.
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We give below the derivation of the eigenvectors and eigenvalues since it

illustrates a frequently used device in problems with similar symmetries.

The eigenvector equation

(a2o -hI).x=0

when written in full, leads to two prototype equations

bx2j_l + (a - k) x2j + cx2j+l -- 0 L

Jcx2j + (a - _.) x2j+l + bx2j+2 -- 0

(80')

(81')

j = 1, . .., n-1

and two boundary conditions

(a - k + c) x 1 + bx 2 = 0

bx2,_ 1 + (a - k. + c) X2n

(82')

We put

x2j_ 1 = Ay2j -1; x2j = By2j
(83')

and insert in eq's (81') to obtain

(b + cy 2) A + (a - k) yB = 0

(a-k) yA + (c +by 2) B = 0

A non-trivialsolution for A, B requires y to satisfy the equation

(84')

(b + cy 2) (c +by 2) -(a-)v) y2 = 0 (85')
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or

y__ 1
2bc -b 2 -c2-+ /[(a-k)2-b 2 - c212 - 4b2c 2 } (86')

Let us put now

(a - /k) 2 - b 2 - c2 = 2bc cos 20 (87')

Then

y± = e ±iO (88')

Inserting this in eq. (84') we find

B 1 = -be -io + ce i0 AI
a-_

B 2 = bei0 + ce -i0 A2
a-_

Introducing now

(89')

x2j-1 =A1 ei(2j-1)O +A2 e-i(2j-1)O l

J
X2j :-B 1 e i2jO +B 2 e -i2jo

(90')

into eq. (82') and making use of eq's (87') and (89'), we finally obtain a system

of two equations for AI , A2 . The requirement of a non-trivial solution for these

yields an equation for 0:

sin 2n0 [b 2 - (a - k + c) 2 ] = 0 (91')

Then, by inspection of the original matrix, we find that the only admissible roots

of sin 2n0 = 0 are
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_k
_k = 2"nn'

k=l,..., n-1

with the remaining two -^^*-_,u_furnished by b 2 - (a - X + c )" =0.

(92 ')

The eigenvalues can be finally given as

_ 7rk c2: a + b 2 + 2bc cos-- + ;
n

X± :a +c +_b
n

k =1,. • • , n-1

(93')

For each X there exists one linear relation between A, and A2. Eliminating

one of them and introducing its expression in eq's (90'), we obtain the components

of the respective eigenvector. The matrix T2n which brings li to diagonal form

should have the normalized eigenvectors for its columns.

(6)

a _/2b 0 "_

\

b a \\ bx\

h N : b\ \\\ \\\ J

x\ \\ \b/

0 \\ \\ /

\b \a/

The eigenvalues are

X : a +2b cos 7T(j - 1/2),. j : 1, . . . , N
J N

(80)

The eigenvectors are columns of the matrix ST, where

Tkj : COS N
_(k - 1) (j - 1/2)

; k, j =1, . .., N (81)

and the matrix S is given by
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Sij --

8ij ; j : 2, • • • , N

(82)

Note that while the rows of T are pairwise orthogonal, this not so for the columns

(eigenvectors), and hence T is not an orthogonal matrix.

The characteristic polynomial is

lh N - hi] : _N(_) - b 2 _N(_) (83)

where again _N(_) is Of the form (6). It is of interest to note that ff one puts

a - _ =- x, then it can be shown that IAN - hi [is proportional to the Chebishev

polynomial of the first kind, defined by

5N(x) = cos N (cos -1 x) (84)

(7)

u +b b\\

b v \ 0
\ \ \

k \ \
\ \ (85)_'2n = \ k

0 \ u Xb
\

b v+

This matrix is associated with a diatomic linear chain with free ends. We give

below the derivation of its eigenvalues and eigenvectors since again this exhibits

an approach useful for problems of this sort.

The equations to be solved are

(h2_ - hI)'x : 0 (86)
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where x is a 2n-dimensional vector.

define:

We divide now each equation in (86) by b and

_: u -L v- L (87)= ; 7 =
b b

We make also the substitution

x -: S. y (88)

where the diagonal matrix S is given, in an obvious notation, by

s:

By inspection it is clear that neither u nor v are eigenvalues and hence _;, r7 / 0.

We multiply now the matrix /X2. - LI on the left by the diagonal matrix S' defined

by

S, =diag (__1__1, 1 , ... ,--,--1 1 ) (90)

This operation does not change the eigenvalues because the null space of (_2n -

LI) S is identical with that of S' (A2.- LI) S (the null space of S' contains only

the 0-vector)• After all these transformations, eq. (86) becomes:

+ (Z

1 a

k

N

1
\

I X

k

k \

\ \

\ \ \

\ \ \1
\ a

\

1 a+

\/;:/

\y.4

= 0 (91)

in which

(92)
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Eqs. (91) can be solved by putting

Yr = yr; a = - 2 cos 6_ (93)

in the rth equation of (91). We find then

Yr : Aeire + Be-ire (94)

where the constants A, B will be determined from the first and last eq's in (91).

The process of elimination finally yields the eigenvalues equation

(ae -i8 - 1) (ae i_ - 1) (e i2nO - e-i2nO) : 0 (95)

By referring to the original matrix it can be shown that the only admissible

solutions of

e i2n8 - e -i2n0 = 0 (96)

are

kTr
Gk =--, k = 1, . . . , n-1 (97)2n

The two remaining values of _ are solutions of the equation

a 2-2acos _ + 1 =0 (98)

Eq. (97) yields the eigenvalues

L_ -u 2+v_+ + b cos_-ff] , k -- 1, . • • , n-1 (99)

Eq. (98) when expressed in terms of _=, 77becomes

_=77+ _: + 77: 0 (100)
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with the solutions (the so-called surface modes)

^

k°- 2 +b+f_2] +

The eigenvectors corresponding to the eigenvalues (99) are S_'y(,k)where

y(k) ±-- cLk

\

0
7rk

sin 2--n
i

'
'. _k(r - 1)

-

wk(2n -
s_n 2n -

sin _rk, 2n
i

I

' 7rk r
sin

2n
I

!

I

I

'. _k(2n - 1)

(101)

(102)

and S_ is the matrix S of eq. (89) with _ replaced by _, while those corresponding

± +
to the eigenvalues )_o are SO .y(_°l where

y(+O) =
(103)

and

; k =0, 1, • •., n-1 (104)

The eigenvectors presented above are not normalized. The characteristic poly-

nomial is

(lO5)
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where all the polynomials _j in eq. (105) have the form shown in eq. (6), with

a - k replaced by v/(u-k) (v-M.

We note that such analytic results do not exist for the matrix of odd order

_'2n+l

u+b b \
\

\

b v x 0

\ U \

\ \ \
\

o \ v b

, /b u+b

(106)

though its characteristic determinant can be written down without difficulty.

2. Associated Jacobi Matrices

i) Let h N denote the matrix

A N --

\
a 2 0\ \ 0

\ \ \

c I 0 \ \ \

\ \ \ \

\ N
\ \ =,D_-2

\. \ \ \

/o,,,o/\ \

\ \ \\x \
CN- 2 0 aN

(107)

We exhibit below a similarity transformation which reduces h N to a diagonal block

matrix composed of simple Jacobi matrices. We treat separately the cases N =

2n, andN =2n + 1.
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(1) N = 2n

We define a permutation _2n

772n ( 2°/
1 2 3 4 5. • •

1 n+l 2 n+2 3 • 2n

(lOS)

When we apply this permutation on the columns of the unit matrix I2n, we obtain

a permutation matrix P2n with the property

p-1
2n _ 2n P2n =

/

0

bl 0

a 3 b 3

\ \
\ \

C 3 \ \
\ \

\ k \

\ \ b2n_ 3
\ \

\
\

\

C2n_ 3 a2n-1

0

fl 2

C 2

b 2

/

a 4 b 4 0
\ \

C4\ \\\ \\\ /

o \\\\,\

Note that P2n

transpose of D2n.

rx_ tx_

is orthogonal so that p-12n = P2n ' where P2n

The elements of P2n are given by

(109)

denotes the

= f _i. 2j-1

k _i,2(j-m)
j =n + 1,. •., 2n

(11o)
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(2) N = 2n + 1

On applying the permutation

7T2n+ 1 =(12,4...,n2n,1/1 n+2 2 n +3 ...2n+l n+l

on the columns of the unit matrix I2.+1 we obtain the permutation matrix

which brings A2.+1 to block-diagonal form:

(111)

and

(P2n+l)ij
= _ 8i, 2j-i

8i,2(j=n-1)'

j =1, ..., n+l

j =n +2, •.., 2n +1

(112)

p-1
2n+l _2n+l P2n+l --

/al blxx

c I a 3 \_

\ \ x

\ \

\ x b2n_ 1
\ \

\

C2n_ 1 a2n+l

/

0

a 2

c 2

0

5 2
\

\ 0

\ if4\ \\\ ]

\ \ \ /
\ \ X ]

\ \ b /

\\ \\ 2n-2/

o /

(113)

These reductions enable us to obtain eigenvalues and eigenveetors for AN

eq. (107) if the resulting block matrices belong to any one of the classes of

matrices previously described.

in
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(ii) If h N denotes the matrix

A N =

/ p-!

a 1 0 . . . 0

0 a 2

\

\

\

" \\\\0

c10

c2\
N

k

CN- p

b 1

\

\

\

\

\

\

k

\

\

\

k

O ° ° ° 0

it is still possible to effect a similar reduction.

\

\

bN-p

/0
a N

This is done by assuming N = 4.p + r

(i.e., N = r mod(p)), where 0 < r < p - 1. The appropriate permutation here is

7r_p + r defined by

pk-. (p - 1) 2 ÷ r +k; k:l,...,_

pk +n _(p- 1-n) 2_ +k + 1;
n= 1, • •., r_k =0,. •., 2_
n r +1, .., p-l_k 0,... ,_-1

(115)

The permutation matrix P, obtained by applying rr2_p+r on the columns of the unit

matrix, reduces the matrix AN to a block-diagonal form in which the first r blocks

are (_ + 1) × (_ + 1) Jacobi matrices and the remaining p - r are _ ×_-matrices

of similar type.
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o Circulant Matrices

i) Simple Asymmetric

Let AN be the matrix

A N --

s o s 1

SN- 1 s0

\
\

t $2 " "_\\ " SN-I /

S 1 \

\ \ S 2\ \
\ \ \

s 2 \ \ _,
\ \ s 1

\ \

1 ' "/S 1 S 2 .... SN- 1 S 0

(116)

The rows of this matrix are cyclic permutations of the first row and hence the

notation

is self-explanatory.

_N : (So Sl $2 " " " SN-1)cyc

The elements of a N can be written also as

(117)

Sr_ k r > k
(AN)kr

_. SN-(k-r) k > r

k,r:0,..., N-1 (118)

The eigenvalues and eigenvectors can be found in several ways but the most elegant

procedure is based on the observation that A N can be written as a linear combina-

tion of powers of a single matrix,

A N =

N-1

sj

j =0

(119)
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in which Q is of the form

Q z

1
\

\

\

\

\

0 0 1

1 0 ...... 0

(120)

Q is a permutation matrix arising from the application of the cyclic permutation _c

77
c /123N1N)

2 3 4 . . N 1

(121)

on the columns of the unit matrix. The powers of _c form a (commutative) sub-

group of the permutation group, and this property is shared also by the matrix

representation Q. Since (_c)N = 5 (the identity permutation) we obtain

QN : I (122)

This shows immediately that the eigenvalues of Q are e i2wk/N, k = 0, 1.....

N - 1. A simple calculation then yields also the eigenvectors. Returning to AN

we can write for the eigenvalues

N-1

_k = _ Si ei2_kj/N; k : 0, ..., N- 1 (123)
j=0
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The normalized eigenvectors are the columns of the unitary matrix U which

brings AN to diagonal form

1 i 2wr'_
N

Urn= / e , r,_ 0,..., N-1 (124)

It is clear, from eq. (119) or the form of U, that any two circulant matrices

commute.

The characteristic determinant cannot be written down in closed form for

the general case. _Ve give below its form for two particular cases:

(1) sj = 0; j = 3,..., N- 1

la N-hI I =(s o-t)N- + _(s 0__)s2

s I
N

+ 2 - (so -_)s +s 2 (125)

(2) s. = 0; j = 2 ..... N -2
]

so - )_
Ih N - hi] = (- 1) N'I - _ + - SxSN. x

i 1)1so - )_
s 1 s N. +

2

(126)
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Various generalizations of the asymmetric circulant are possible [26]. We

mention here one of the simplest: instead of applying the permutation _ of

eq. (121) on the columns of the unit matrix, one applies it on the columns of an

arbitrary diagonal matrix A = diag (a I a 2 • • • aN). The resulting generalized

circulant h N is of the form:

N-I

'EAN : s i (Q')J (127)

]=0

where

0

0'= i

\a,

#

The eigenvalues of h N are then

a 3

\
0 \

\
\
aN

0 ..... 0 //

(128)

N-1 J i2"rrkj

kk = _--_ s., (_ala2"'" aN) e N
j=0

;k--0 ..... N-1
(129)

and its jth eivenvector is given by the column
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in which

xN.-1
J

I
I
I

a 1 ak+21- • • aN

xN.-k

I

I

a 1

x.
J

(130)

X.

J

• 2"_j

al...a _ e ; j =0 ..... N-1
(131)

(ii) Alternating Asymmetric

We consider the matrix

_2n =

u s 1
S2n- 1

S2n- 1 V S I.\ $2n-2

I \ \ x., I

I \ \ \ I

I \ \ \ I
I \ \ \ i\ \ \
I \ \ \\
I \ \ \
I \ \ S1

S1 S2n - 1 V

A 2n can be put in the form

(132)

]_2n ---- U +V2 i_ U -- V
• • Jr

' S1 " S2n- cyc. 2
J (133)
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where J is the same as the second matrix on the i.h.s, of eq. (27). The first

matrix in eq. (133) is a simple circulant and we apply on _2.-. the similarity

transformation U of eq. (124). Then

where

U --V
A' _U IA U=M+ J'

2n 2n

(134)

and

Mrj = _j _rj

u +v

#j :-- +2

2n- l

E s_ e

j =0, .... 2n-1
(135)

(136)

We further apply on A'
2n

Pkj =

such that

a similarity transformation P,

_j, 2k

_j, 2k- 2n+l

; k=0 ..... n-1

; k--n ..... 2n-1

(137)

p-t A' P : diag(A o, At , An t)2n " " " _ -
(138)
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where

U_V /

_r

Ar : (139)

U -- V

2 #r+n

It is of some interest to note that the permutation P of eq. (137) is a special case

of the permutations (115) which reduce displaced Jacobi matrices. The effect of

P on a matrix A of the type

A2n -----

Aa

c Ad

where the A's are n x n diagonal matrices, is as follows:

where

p-lh2 n p =diag(A1, A2 ..... An)

A r =

The eigenvalues and eigenvectors of I r can be easily found. We summarize:

the eigenvalues of A2n are

_i _r + _/'r+n r r+n U -- V 2= + + ; (140)
r 2

r =0,..., n-1

203



the order of appearancebeing ko h-o" " " k+n-1_-1 . The eigenvectors are the

columns of the matrix UPS, with U and P as described above, while S is _ven

by

in which Sr

S = diag(S O, S1..... Sn-1)

is the 2 x 2-matrix diagonalizing the matrix h r

(141)

of eq. (139).

Analytic results, such as given above, have not yet been found for alternating

circulants of odd order.

(iii) Doubly Alternating Asymmetric

Let A2n be the matrix

_2n ----

S O S 1 S2n- 1_2n-1 _0 _1 " _2n-2

S2n- 2 S2n-1 S 0 S 1 ..... S2n_ 3

_2n-3 _0_I " _2n-4

S 2 S 3 • S2n_ 1 S 0 S 1 /
_1 _2 .... _2n-I _0

In the sequel we shall employ the notation

_2n ----

O_0 Sl " " S2n-1 /

2n-1 O-0 O-1 " " " O-2n-2/
eye.
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Let us define now the permutation matrix P

Pki

(

j 8k,2i ; j =0, . , n-1
Z

[ 8k.2(j-n)+l; J =n, , 2n-1

(143)

Then

p-1 A2nP -_

where A, B, E and D are simple circulant matrices given by

(144)

An : (S0 $2 $4 " " " S2n-2)cyc.

_n = (Sl S3 S5 " " " S2n-1)cyc.

Q : (0., % % "'" %.-l)cyc.

_n = (% 0-2 0-4 " " " 0.2n-2)cyc-

(145)

We apply now a similarity transformation U on eq. (144),

C Z

U 0 1
0 U

(146)

in which U n is the unitary matrix of eq. (124). The resulting matrix is
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A A AB
U-1 p-1 A2 N p [j = (147)

_AC AD/

where A^ is the diagonal form of A, AB that of B, etc. A further permutation Q,

of the form exhibited in eq. (137), brings the matrix in eq. (147) to the form

Q-I U-I p-1 A2NPU0= diag(A o, A I, ... , An. I) (148)

where

(149)

Finally the eigenvalues of A2n are given by:

(150)

The eigenvectors are the columns of the matrix PU QS, where

S = diag(S O, S1, ... , Sn_l)
(151)

and the Sk are 2 × 2-matrices diagonalizing the Ak of eq. (149).

(iv) Simple Symmetric

(1) N =2n

_2n --(So SI " " " Sn Sn-i " " Sl)cyc.
(152)
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This is a special case of the simple asymmetric matrix (116), its eigenvames

are

n-1

_k j (153)_k = SO + 2 Sj COS_ + (-I) ksn n

j=l

k=0, ..., 2n-1

while the eigenvectors remain the same.

(2) N = 2n + 1

_2n+l: (So Sl " Sn Sn-I " Sl)cy c-

(154)

n

E 2.kj= s o + 2 si cos ; k =0,..., 2n
2n+l

j=l

(155)

Again the eigenvectors are the same as those for (166).

For the simple case s. = 0, j = 2, .... n there is no need to distinguish
J

between the parities of N, the eigenvalues of

a s =(s o s 10. • • Osl)_y_.
(156)

being given by

2_k (157)
_k = SO + 2slC°S _ ; k =0 ..... N- 1

N
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The same is true for the slightly more general case

for which

A N : (S O S i S 2 0 . 0 S 2 _lJcyc.
(looj

2_k 4_k
_k = SO + 2Sl cos -- + 2s 2 cos

N N

k--0 ..... N-1. 159)

The characteristic polynomials for (156) and (158) can be easily obtained b using

eqs. (125) and (126).

(v) Doubly Alternating Symmetric

Let

_2n =

Io_O S 1 . S n S S1 1

n-I

Cy0 O-1 . . . Cr O-
n n- 1 O-2/cy c .

/
1

(16o)

be a special case of eq. (142). The eigenvalues and eigenvectors are easily ob-

tained from those of (142). Below we exhibit only one particular case of (142)

which appears more frequently:

_2n

S 1 o-0 S 2 0 .... / cyc.

(161)
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The eigenvalues are

So +o- 0
2

+ s12 + 2s 1 s 2 cos
2_k

+$22n

k=0 ..... n-1

The characteristic polynomial of _2n in (161) is given by

(162)

IA2n-hIl :_. ()_) -s2 s2 _n-2 ()_) -2(s 1 s2)_ (163)

where _n (_)' /)n-2 ()_) are as in eq. (6), with a - )_ replaced by (u - )_) (v-)_) -

(s 2 - s_ and b replaced by - s is 2 .

(vi) Skew-Circulant

Let

s o s I " " " SN- 1

-sN-1 s o s 1 • • • sN

AN: , \ "- ,. , (164)

l \\ \,,

_-Sl .... SN- 1 SO

Making use of methods similar to the ones described above we find the

eigenvalues

N-1 i_,(2k+l)j

_k-- _. sj e N

j=O

;k=0 ..... N-1
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The eigenvectors are the columns of the unitary matrix U which brings AN to

diagonal form

1 irr(2j +l)k

Ukj _/N e N
; k, j=0,..., N-1 .

(166)

Here also some generalizations are possible but we shall not be further con-

cerned with these, except for the following case of an alternating skew circulant

A2n

-,S2n- 1 v_\\ II \

', \\ \ \ I /
' \ \ \ I I
I \ \

\ ! \\ U S 1 l

\I -.

(167)

The eigenvalues are

in which

#k + /Ak+n ilk -- k+ (168)
± +

2

k =O,..., n-1

/Cg k : m

2n-1 rr (2k+l)j
u + v p i 2n (169)

+ // s. e2 J
j=l

The eigenvectors are columns of the matrix U P S, with U given by eq. (166),P

by eq. (137)and S by
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S=diag(S o, S 1..... S__I) (170)

where Sk is a 2 × 2-matrix diagonalizing the matrix Ak

A k --

U -V

V _k+n

(171)

We conclude this discussion of one dimensional matrices with the remark

that no restrictions, as to relative values, were imposed on any of the parameters

involved. Hence, all the results presented are universally valid. We shall see

below that this is true also for higher dimensions.
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Part II. Two Dimensional Matrices

Introduction

It is remarked in the text that whatever the dimensionality of the problem

from which a matrix originates, the matrix is always an ordinary one, i.e., its

elements are complex or real numbers and only two indices are needed to

specify all of them. On the other hand it happens in many cases that the matrices

considered may be handled more conveniently if some partition into blocks can

be effected. This is particularly so when a large number of elements vanish.

In this fashion the concept of a generalized matrix arises. Several problems

confront us once a partition is obtained: for instance, the individual blocks may

not commute and just as important, properties of the original matrix may not

carry over to the partitioned matrix, e.g., symmetry in the ordinary elements

does not necessarily imply symmetry in the matric elements.

We exhibit below results which parallel those in Part I. It is clear that

whenever a one-dimensional matrix can be brought to diagonal form by a

similarity transformation which is independent of the matrix elements, the

corresponding result for a generalized matrix can be obtained automatically,

regardless of the eommutativity of the appropriate block matrices. For other

cases though, commutativity is essential.

1. Continuant Matrices

i) Simple Continuant

Let A be the N 1N2 x N 1N2 -matrix

F G,
\

,, F\ \
\ \

A-- \ \
\

\
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\ \
\ \ G
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in which F, G are NI x NI -matrices. A reduction of A to block-diagonal form

can be effected immediately by using the similarity transformation TN2 ® IN2,

with TN2 given by eq. (12), INI the unit matrix and the Kronecker (or direct)

product ® being defined as follows

The reduced matrix A' will have therefore the form:

-= I -i -- I
N2 + 1 8r_ (174)

Note that this reduction is independent of the commutativity of F with G.

The matrices defined in eq. (174) may be termed the generalized eigenvalues of

A. It is clear that the actual eigenvalues of A will be those of the N2 N I × NI -

matrices of eq. (174). Using the matrices of Part I, a whole body of results

can be obtained for all those cases where F and G can be simultaneously diag-

onalized. Here we discuss only the case of F and G being simple continuant:

I :I 1Bx \ \ \ \\ \ 0

F \ \ \ \ \ \-- \ \ \ • G \

0 \ \\\ ' --- \ \\ \ \ \
\ \ D

/ \ \C\\B" \A D

(175)

Then the transformation I_2 ®INI, with TNI as in eq. (12), brings A' to

diagonal form. The eigenvalues of A are

 __AC k
_vkj -- A + 2B cos NI + 1 + 2C cos N2 + 1 + 4D cos NI + 1 cos N2 + 1

k = 1 ..... NI; j -- 1 ..... N2 (175)

_N 2

The eigenvectors are the columns of the matrix (TN2 ®INI ) (IN2 ® TN1

® TN, . The elements of this matrix (in vector index notation) are:
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7rpl ql _P2 q2
( ) = 2 sin_ sin_ (176)

TN2 ® TN1 pq _(N 1 + 1) (N 2 + 1) N1 + 1 N2 + 1

where p = (pl, P2); ¢l = (ql,q2) and pl,q 1 = 1, ''-,N 1 ; P2' q2 = 1, -.-, N2 .

The results above are still valid when A, B, C, D become arbitrary matrices.

(ii)Alternating Continuant

Let A be the matrix

1\ G\ \F2 ",,
\

\ F1 \
\ \ \

A \ \= \ \

\ \ "G

\G \F 2

(177)

The matrices F,, F2 , G are N1 × N1 -matrices, and when N2 is odd the last

F matrix in (177) is F1 while for even N2 it is F 2 . We have to treat these two

cases separately.

(i) N2 = 2 n2

We follow the procedure of the one-dimensional case and apply the similarity

transformations T2P2 = (T2n2®IN I) (P2n2®IN I)'where T2n2 is given by eq. (12)

and P2% by eq. (33). The result is

p_l T_I A T 2 P2 = diag (H I, H2," " ",Hn2) (178)

where

H k

F/1 + F2

Q

2

z

F 1 - F 2

+ 2 G cos
_k

2n2+1

F1 -2 F2 1
F1 + F2 rr(2n 2 + 1 -k

+ 2G cos
2 2n2+1 /(179)
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If the three matrices F1 , F 2 and 6 commute, then the same similarity trans-

formation SN1 (whenever this exists) will bring them to diagonal form, and we

write

where

S-I p_1 T_I a T2 P2 S = diag (a r a 2, • • -, a.2 ) (180)

S = 12n2 _ SNI (181)

and

IA F1 + A F2 AG _k A FI - A F2

+ 2 cos 2n2 +I 2

A k =

AFI -AF2 AFI +AF2 2A G cos 7zk

2 2 2n 2 +

(182)

The N1 × N 1 matrices A FI , A F2, AGare the diagonal forms of F1, F 2 and 6

respectively. Each A k can now be brought to a block-diagonal form, the blocks

being 2 x 2 matrices Aki,

_ +_ _.F_ __..F2
+ G ] .l

2 2 i cos_

Ak i = (183)

_k
J J 2 _9 cos

J 2n 2 +

F 1_. - ;_.F2

2

j = 1,'" ",N 1

_k

2n 2 +I

_. F1 + _. F2

J J

The similarity transformation Q2N 1 needed, is as defined in eq. (137) (there

it is denoted by P ). It is a simple matter now to write down the eigenvahes of

_kj and its eigenvectors. Returning to the original matrix A, we see that its

eigenvectors are the columns of the matrix T2 P2 S QRwhere T2, P2 ,S have been

already defined above, and
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Q = 1.2 ® Q2N 1

R : diag (R11,R12, " " ", Rn2N1)

(184)

(185)

The Rk] in eq. (185) are the 2 × 2-matrices which bring hkj to diagonal form.

In certain applications (e.g., a diatomic lattice) we encounter the case where

F1,F 2 and G do not commute. If these matrices are entirely arbitrary no further

reduction of h is possible. Below we treat one particular case which admits of

a complete reduction even though commutativity does not exist:

B\ 0 A 2 B\ 0

• F2 (186)-- ' = \B
F1 \ \B \ \\ \

\ \ \

\ _B \AB \A

C\ D\ 0 \ (187)
\

O \ \D )G: \ \
\ \

\

\D _C

The last h's in FI, F 2 will be A2,A I respectively forN I even, andA1,A 2 for

N 1 odd. It is easily seen then that the matrix Hk of eq. (179) can be written in the

form

(188)

are continuant matrices with elementswhere H k

= i 2D cos (S r
(H_)j 2n 2 + 1 ' j+l + _r,j-1 ) +

A I + A 2 _vk 1+- 2 C cos S
+ 2 2n 2 +i ri

(189)
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and

A I -A 2 A I -AJ = , ag ' -
2 A1 -A2 A1 -A2 '_

@ I / (190)
' ' 2 ' 2

Since the H_ 's are continuant, the transformation TNI of eq. (12) will bring

them simultaneously to diagonal form. Also we have already shown how the J

matrix transforms under T in eq. (30). Hence on applying the transformation

TI= I2n 2 ® TN1 on the matrix of eq. (178), we obtain

T_' p_l T_I A T2 1>2 Tx = diag (H'1 , H_, "'" , H'.2) (191)

where

i:01 (0 /k A1 _A2 ,'I
J

I

ffk = + 2 I" /

o
1

(192)

The diagonal matrices M_, contain the eigenvalues of H_. We employ now

the permutation matrix Pl

t

liktO a block-diagonal matrix, the blocks being the 2 × 2-matrices Akj

= In2 ® P2N1, with P2N1 defined in eq. (33), to bring

k = 1, • • ", n 2 ; j = 1, • • •, N x (193)
kj _

-A12"A2 /_ki/

with

A +A 2 _k [ _rk _cos _J
/_k_j _ 1 +- 2Ccos'_ + 2 _B + 2Dcos --2 2 n 2 + 1 2 n 2 + 1 ] N1+ 1 (194)

Finally the eigenvalues of the original matrix A are given by

_:1: _Zkj +_kj + _kj --_kj 1 2 (195)
ki - 2 2 + 2

k=l, "'',n 2 , j =1, "'',N 1
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The eigenvectors are the columns of the matrix T 2 P2 TI PI S, where

T2, P2 , T! , P! have already been defined and S is the matrix

S -- dJ.ag (811,S12 , • • • , Sn2N! ) (196)

the Skj being the 2 × 2-matrices diagonalizing A'kj of eq. (193).

(2) N 2 = 2n 2 + 1

It is readily shown, in a manner identical to the case of N 2 even, that the

eigenvalues of A for non-commuting F1, F2, {; are

_.±
kj +- /(_k-)2 (AI_A2 //'_kj +_kj + j --/-Lkj +

2 2
(197)

k:l, "'" ,n 2 ; j :1, "'" ,N 1

where

+ AI+A2 rrk ( rrk / rrj
+ 2Ccos + 2 B + 2Dcos cos

P'ki - 2 2 (n2 +1) 2 (n2 +1) N1+1

(198)

The other N 1 eigenvalues are those of the matrix F 1 , which for N 1 even are

given by eq. (36) and for N 1 odd by eq. (42), when u, v are replaced by A 1, A

respectively.

Trivial changes in the transformation matrices of the even N 2-case will

quickly yield the eigenvectors for the present case.

Similarly, for commuting F 1 , F 2 and (_, the eigenvalues of A will be the

roots of the matrices

Akj

1 + _F2J

2

Trk _FI - _F2
+ 2 XG cos J J

J 2 (n 2 + i) 2

__F 1 --_F 2 _F! +_F 2

J i i i 2 L9 cos 7rk

2 2 J 2 (n 2 + 1)

k:l, "'" ,n 2 ; j :1, "'" ,N 1

(199)
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To these roots one has to add the eigenvalues of F 1 in order to obtain the

complete spectrum of it.

We conclude this section with the following remark: the reductions performed

in the non-commuting case will be still valid to a certain extent if the numbers

A, B, C and D are replaced by matrices. Thus if these are arbitrary matrices

eq. (193) remains valid, farther reduction being dependent on the nature of A,

B, C, D. We shall make use of this result in our treatment of higher dimensional

matrices. Here we mention one case arising in a two-dimensional lattice problem:

A, B, C and D are 2 × 2-diagonal matrices. Then eqs. (195), (197) are valid if

these matrices are replaced by their respective diagonal elements.

(iii) Variants of the Continuant

(1) Let it be the matrix

+G G
\

Q F \_
it ' \ \ (200)

---- \ _ \\\ \

\ \ \GX k

F
\

G F+G

and F, G are N1 x N1 -matrices.

We define now a similarity transformation T2 = TN2 ® INl

orthogonal transformation of eq. (65). Then

T_ 1 it T2 = diag (H0,H V --- ,HN2_I )

, where TN2 is the

(201)

with

7zk

H k = F + 2 G cos _N ,"k = 0, • • • ,N 2 - 1 (202)
2

This reduction is valid for arbitrary F, G. Further reduction will depend on

the nature of F, G. If in particular F and G commute, then the same similarity
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transformation SN,

will be

will bring them to diagonal form and the eigenvalues of

_k
_kj -- _.F + 2 k9 cos--;J J N

2

k=0, • • • ,N 2 -1

j = 1, • ' " ,N 1

lgNq_

where XF and XC are the eigenvalues of F and G respectively.
j ]

We make use of eq. (203) for the special case

/A+B//cIA0 c 0F \ \ "G: ',: \ ' X

0 \\\ _\A \B 0 \\

\ \\C
B A+B NI

(204)

Then we can identify SN_ with TN_

be given by:

from eq. (65), and the eigenvalues of A will

• _k
kkj = A + 2 B cos 7r j + 2 C cos _ ;

N 1 N 2

k:O, "'" ,N2-1

j :0, "'" ,N,-I

(205)

The eigenvectors are the columns of the matrix

T _ (IN2 _ IN) (IN2 _ I_1) : TN2 ¢ 'IN 1

Note that the result in eq. (205) remains valid even when A, B and C become

arbitrary matrices.

(2) Here we consider the alternating matrix

F I + G G,\ 0

\\ \\

\ F1 G

\_\ F2 + G
G

n 2

(206)
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Again F1 , F 2 and G are N 1 × N1 -matrices. If we employ the results for

the one-dimensional case (85), we can show-provided the matrices F1 , F2, G

commute and G possesses an inverse-that the eigenvalues of A are the roots

of the equations

and

(F 1 - hi) (F 2 - hi) - 4 G 2 cos 2 T-_k = 0 (207)
N2

k = 1, • " " ,n 2 - 1

(F:-_I) (F 2-_,I)+G IFx-_I+F 2-_I] =0 (208)

The eigenvectors will follow just as in the one-dimensional case. Since by

assumption F1, F2 and G commute, the eigenvalues of A will be the roots of

the equation

(_._ - _) (_ - _) - 4 (_)_ _o_ !-_k --o
J 1 n 2

k = 1, " • " ,n 2

j -- 1, " • • ,N 1

J J _ j J
=0

The more interesting case of non-commuting FI,F 2 where

-1

(209)

F 1 =

AI+B B \
\

BA 2 \
\ x \0

\ \ \

\ \ \

0 \ \ \\ \ B
\ \

B A2+B

\
B A 1 \\ 0

\ A 2 \\ \

\ \ \

0 \ \\ \ B
\ \

\ B 'AI+B

Iic1\ 0
\

\

'c/
(210)

has up to the present resisted all efforts toward its diagonalization.
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2. Circulant Matrices

(i) Simple Asymmetric

Here we consider the matrix

A = (A 0 A1 "-" ,AN2_l)cyc.
(211)

in which the Ak are N1 × N1 -matrices.

The similarity transformation U 2 = UN2

reduces A to the form

® IN, , with UN2 given by eq. (124),

U21 A U2 _-diag (Ao, A I, " " " ,AN2_1 )
(212)

where

N 2 -1

Ar : _, Ai ei 27rrj ; r=0, "'',N 2-
N 2

j;O

1 (213)

Further reductions will depend on the nature of A j. If for instance all A i

commute then the transformation S = IN2 ® SN,-where SN1 brings the Aj

simultaneously to diagonal form- will completely diagonalize A:

S -1 U21 AU 2 S-- diag (boo _Ol "'" _N2-1,N1 ) (214)

in which

N2-1 k = 1, • • • ,N 1
= _ _A i ei 27rr j . (215)krk /I

k N2

j=o r=0, "-',N 2 - I

The eigenvectors are the columns of the matrix UN2 (_) SNI.

The special case in which the matrices AN2 are circulant is of particular

interest: the matrix SN, is then the UN, of eq. (124) and the eigenvalues are

N 2 -1 N 1 -1

}krk : _--_'j=0 =_o Aj_ ei 2_k_ i 27_ rjN----_e N2 (216)
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The result in eq. (216) remains valid when the Aj _ become arbitrary matrices

since the diagonalizing transformation does not depend on the matric elements

of b.

(ii) Doubly Alternating Asymmetric

The matrix to be considered here is

b= _ A° AI "'" A2n2

2_-1 Bo B1 B2n 2

(217)

We have already used this notation in eq. (142). Here the h's and B's are

N

with P2.2 given by eq. (143). Then

= / A(1)

p 'aP \ a(3)

1 × N1 -matrices. We define the similarity transformation P2

&,(2) /
A(4)

- P2n 2 @ INI

(218)

where h (r)are the generalized simple circulants

A(1) = (k O A 2 • . . h2n2_2)cyC.

A(2) = (hi A3 "'" A2.2-1)cyc.

A(3) = (B 1 B 3 • .. B2n2_l)cyc.

A(4) = (B 0 B 2 "'" B2n2_2)cyc.

(219)

We apply now on eq. (218) the similarity transformation U 2 -= I2 ® U2

where [52 is as in eq. (212). The result will be

uV' ,, K(')/
(220)
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where K(r) is the block-diagonal form of A(r), r = 1, 2, 3, 4. A further permuta-

tion Pl = Q2, 2 ® IN1' with (}2, 2 as in eq. (137), brings the matrix in eq. (220) to

the form

(221)

The matrices Hk are given by

= (222)

Hk \K_3 , K_4)/

and K(kr) r = 1, • '', 4; k = 0, • • • ,n 2 - 1 is the k th block of K(r) , similar in

form to Ak of eq. (213).

To reduce the Hk we need at this point to know the commutation properties

of the A's and B's. Assume first that all these matrices commute: then, if Us,

denotes their common diagonalizing matrix, we obtain the matrix H'k

/--_ (12 (_UN1)-1% (i 2 (_UN1) -- (223)

where A (r) is the diagonal form of K(kr). Now, the permutation P2N, defined in

eq. {137), when applied on [_ leads to the matrix

P-12N1Hk' P2N 1 = diag (Jk,, Jk 2 , . . . , JkN1 ) (224)

where

Jkr = (_(k:r) k(k2_)/ k =0 ..... n2-1 t (225)
k _-(ka,) h(k4r)/ r 1, , N 1
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' Finally the eigenvalues of the original matrix A are

- +_ + _(k2r) _(k3r) (226)
kr 2 2

k= 0 ..... n2-1; r=l ..... N1

The eigenvectors are the columns of the product of the various transformations

employed.

We return now to the original matrix A and assume that not all of the A's

and B's commute. For simplicity we shall assume that A1 , _, --., _n2_1

coincide with B1, B2 , • • •, B2n 1 and all are simple circulant matrices, while A0
2-

and B0 are alternating circulant of the following type:

A 0 --

CyC.

So : \ Ao5... Ao , oy . (227)

Let us denote by Ao the generalized simple circulant

_0 _

Then the matrix A can be written also as

(228)

diag (I_i, - IN,,- .... Is, - IN,)Sn2 "

Then the transformation U5 of eq. (212), with N 2 -- 2n 2 , reduces A0

diagonal form, and on applying it on A it yields

U_ 1 AU 2 = diag(A(°), A(1) ...... /l (5n2"1)) +J

(229)

to block-

(230)
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in which

h(k ) _ Ao + Bo
2

2n2-1

+ /_-_A.j
j--1

• rrkj

e (231)

J 7-

0

-- Bo*o . o
0 "'A° - B°

n 2

Ao - Bo

2

0

0

n 2

o
n 2

(232)

A further reduction of the matrix in eq. (230) is provided by the permutation

P2 = P2n2 _ IN, ' with P2n2 given by eq. (137),

p_1 U. I AU 2 P2 = diag(llo' HI ..... Hn2-1) (233)

where

Hk=

]_(k) _0 --B0

2

(234)

ho - Bo 2)A(k+ n
2

k=0 ..... n2-1

At this point we must assume N 1 = 2n 1 since no analytic solution is known for

the odd case. Hence, if this is so, we can write:

A._0- B0 _a -/3 diag (1, -1 ..... 1, - 1)2 n
2 2 1

(235)

On the other hand the A(k) ' s are simple circulant and can be brought simultaneously

to diagonal form by the transformation U2n '

tl k the transformation 12 ® V2n1 we obtain

defined in eq. (124). If we apply on
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(I 2 _ U2_1)-1 l]k(I2 ®U2.1)= diag(A(ok) ' ^_k), A(:+"2)^(:+_2))+

0 I

- /3 In

+ 2 i. 1

n I 0

(236)

in which A(0r) contains the first n 1 eigenvalues of A(r) and A(I_) the n 1 suc-

ceeding ones.

The similarity permutation I ® P4 , with

1 0 0 0 /

0 0 1 0

P4 =
0 0 0 1

0 1 0 0

(237)

brings the matrix of eq. (236) to the form

(In, _P4)'I(I2_)U2-,)-lUk(I2_U2nl)(Inl ©P4)= diag(H(k °) , H(k1)) (238)

where

[](0) =

_'_ In, _(':+n2) / ; _'](k') -- \CL-_I _o(k+n
2) I

\ 2 n, /

(239)

We apply now the permutation P2n

obtain

, defined in eq. (137), on H(k°)
I

and H(kl) to

p- 1 Hk(O )
2n I P2n I

p-1 H(1)2n P2n
I i

= diag (K(k°o) , K(k°) ..... K(k°)1.1)

= diaR (K_(_) K(.1) -,K(1)_,)
' k] ' " " gn l

(240)
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where

\

a - fi (k+- 2 )
2 Xj+n,

• K(I) :!
' kj J

(Z -- /_ _(k+n2) ]

2 J //

(241)

In eq. (241) X_r) is by definition the _theigenvalue of the matrix A(r) of

eq. (231). Again the entire reduction up to this point remains valid if the X_)'s

become matrices. It is an easy matter now to write down the eigenvalues of A,

after solving the quadratic equations arising from K(°) and K(1). The eigenvectors
J J

will be the columns of the matrix 62 P2 U1 Q P1 S, where 62 is defined in eq.

(230), P2 in eq. (233), 61 --- (I2n 2 ® 62n ) and U2n 1 as in eq. (124), 0 _ (I_1_2 ®P4),

PI - (I2"2 ® P2"1)and P2.I as in eq. (137),and finally S ---diag (S(o°), S(o°),... ,

S(') ), inwhich S_[) is a 2x2-matrix diagonalizing K_), r= 0,1.
2-1, nl-I

(iii) Symmetric Circulants

As in the one-dimensional case, the results for the symmetric circulants

follow automatically from those for the asymmetric ones and therefore will not

be treated further here.

Part III. Three Dimensional Matrices

The results to be obtained in the following depend largely on those of Parts

I and II. Since we have shown in Part II how partial diagonalizations can be ef-

fected in several cases involving arbitrary matrix elements, here we shall pro-

ceed directly to the matrices of interest.

1. Continuants

(i) Simple Continuant

Let /_ be the N1N2Na matrix
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with

\\ \\ 0
\

\\ \\ \

\ \
0 \\ \ T

Txs

S: \ \ , T: \ \ \

\o,, \\ \ 0 \ \\

t; F/N \K \
3 3

(242)

(243)

(See page 230 for Equation 243a}

All of the matrices above are generalized or ordinary simple continuant

matrices, and we can write down the eigenvalues and eigenvectors immediately:

)kjkr : A + 2B I cos j0 + 282 cos kca0+ 2Bs cos r_b

+4C 1 cos jOcosk_o+4C scos j_cos r¢+4C s

+ 8D 1 cos j 0 cos k_p cos re

7T 7T
0_ " ; _0:_-; ¢-

N1 + 1 N2 + 1 N3 + 1

j = 1, . • • , NI; k : 1, • • • , N2; r : 1, • • • , N3

cos k_0 cos r¢l

(244)

This result remains valid if A, Bi , Ci and D1 become arbitrary matrices.
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J
O /

/
/ /

/ /
/ /

/ /
d'

II

/

f /
f

f
z / _:_

f
7

J

J

J

0

F .
O / f

f f f
f f I

f
/ f f

f /

f /

if /f / 0

II

f "---.2

v,,4

f

Q / 1

f J t _
/ f I

f f t

I f

/ I f 0
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The eigenvectors of A are the columns of the matrix TN2

where TNi are given by eq. (12).

(ii) Alternating Continuant

The matrix to be considered here is of the form

where

I:i T\

S2 \\ 0

\ \ \\
\ \ \

A-- \ \ \

0 \ \
\ \

T S,/
N 2

fSl; N2 = 2n 2 + 1
s,

1
L $2; N2 = 2n 2

® "I'N3

(245)

(246)

Also

S 1

\

\
\

F2 \ 0
\ \

\ \ N
\ \ \
N \ ,

\ \. i

''¢N \

G F'
3

f

F' = _ FI ; N3 = 2n3 + 1

LF2 ; N3 = 2n 3

/:2

; S 2 =ti \

(
F2

F" =
/

_F1 ;

\

\

F1 \
t

\ \ t
\ \ \ I

\ \ G I
!

\ \
G F"/

/N3

N 3 = 2n 3 + 1

N 3 = 2n 3

(247)

(248)
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and

A B 1

N

B 1 A 2 " \ 0

= \ \ \ . F 2
\ \ \ , =

0 X \ 1
\

\

B, y

A ]31 '_

k

B 1 A 1 \ 0
k

\ \
\ \ \

\ \ B1
0

\ \

\ ' \B 1 A" /
i

(249)

A I; N I = 2n I + 1 _A 2; N I = 2n I + 1A' = ; A" =

A2; NI = 2n I AI; N 1 = 2n I

(250)

The matrices T and (; are as in eq. (243).

For simplicity we shall choose N 2 -- 2n2, N 3 = 2n 3 and N 1 = 2n 1. All

other possible choices lead to soluble cases and the procedure to be followed is

similar to the one used below.

First note that ($1, S 2 ) and (F1, F2) are pairs of non-commuting matrices.

We proceed as in the two-dimensional case, and apply successively the trans-

formations T 2 P2,

[ 2' T21 AT 2 P2 = diag(_l, £_2' " " " ' Qn 2) (251)

where

T2 = (T2n2 ® IN a) ® IN 1 ; P2 = (P2n 2 ® IN a) ® IN,
(252)

with T2n 2

and

, P2n 2 as in eq. (178),

5--

_k =

i - $2

A2n2 k+,

SI + S 2

Ak - 2 + 2T cos kc0;

(253)

(254
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Recalling the definitions of the various matrices in eq. (254), it is easily

seen that the h_ 's are generalized continuants the matrix elements of which are

F + F2(^k)pq = 2 + 2H cos kcp) _pq + (6+2K cos k_0) (_p,q+l ÷ _p,q--1 ) (255)

and

S_ - S2 [ F_ _ F 2 F_ - F 2 F_ - F 2 F_ - F2_

-diag _ , ' "'" - "_2 (256)2 2 ' 2 ' 2 -3

We apply now successively the transformations T3 = (I2. 2 ® T2n3) ® I2n, and

P3 = (I2. 2 ®P2. 3 ) ® I2.1 --with T2n 3 as in eq. (12) and P2. 3 as in eq. (33) --on

eq. (251) to obtain

(T2 P2 T3 P3 )-1 AT2 P2 T3 P3 = diag (011, _12' " " " ' _2,2n3 )
(257)

in which

IF Akr

1 }F2

(258)

and

F 1 + F 2

A_m - 2 + 2H cos g_ +,2 [G + 2K cos _] cos_m¢ t
= 1,..., 2n2; m = 1 .... 2n3; ¢ - 2n 3 +1

(259)

Again we observe that the A_m of eq. (258) are continuants with the elements

A + A 2 }(A_m)pq : 2 + 2B2 cos 2v_0+ 2 [B 3 + 2C s cos L_0] cos me _pq +

+ (B 1 + 2C I cos 4)cp+ 2 [C3 + 2D I cos 4)cp]cos m_b) (_p,q+1 -i-_p.q_l)

p, q = 1, . • • , 2n 1
(260)
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and

F_ - F2 [A! - A2 AI - A2

2 - diag \ 2 ' 2
_ooo,

(261)

If we apply on eq. (257) the successive transformations T 1

= ) ® P2, with andP1 (I2- 2 ® I2n3 1 ' T2n' P2n,

we get

= (I2n2_I2n 3) Q T2n,

as in eq.'s (12) and (33)respectively,

(T2P2T3P3T1P1) -1 AT2P2T3P3T1 P; : diag (_111' _112' " '

) (262)
• ' _'_n 2n3,2n

2' i

where

Qkrj

: I AkrjA1 - A2

2

A 1 - A2 \

)
A 2n 2-k +1,2n 3- r+l, 2n 1 -j +1/

(263)

and

A_ mn =
AI + A2 + 2B I cos n_ + 2B 2 cos _c_ + 2B 3 cos m_

2

+ 4C 1 cos n_ cos 4_0 + 4C 3cos n_ cos m_b +4C s cos_q0cosm_

+ 8D I cos n_ cos _q0 cos m@

77

• o ,= 1, • • • , 2n 2, m = 1, • • • 2n 3, n = 1, • • 2hi; _ 2n 1 + 1 (264)

It is easy now to find the eigenvalues of _krj' provided that all capital

letters in eq. (263) and (264) denote either scalars or diagonal matrices. Thus

;+ - _j k r /_j k
_ _ _jkr "_ _'Ljkr + +

jkr 2

j = 1,. • • , 2nl; k = 1, • • • , n2; r = 1, • • • , 2n 3

(265)
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in which /_kr is identical with Akr j of eq. (264) and /_'kr has the same form as

÷

_jkr but each cosine enters with a (-) sign.

(iii) A Simple Variant

Let

/S +T T\ \

T S \ 0
\ \ \

\ \ \
\ \ \

S T
\

0 \

T S+T/

(266)

where

F.G G 1

\

G F \ 0

\ \ \
\ \

S = \ \ \G\ F
0 \

\

G F,

H+K K\K H \ 0\ \

; T= \ \ \
\ x

\ H \KK_
0 \,

K H+

A + B I Bl\ \

fB,

\ B, A.B,/.,

; G=

I B s + C3 C3\ \
C 3 B 3 \ 0

l k \ \

\\ \x \\ )

0 \ \ '33 C3 /

C3 B s + C3/_ 1

; H=

I B2 + C1 C1 \ 0 \]

C,\ B\\\\
\ \ \

0 \ \ X B 2 C I

C I B2 + C I/s,

(267)

Cs +D 1 D I
[ DI C \ 0
/ 5 \ i

K I " ', \ !
", \

i , C s D I
0 _ "

1

Just as for the case (i) above the eigenvalues can be written down im-

mediately:
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jkr
=A + 2B 1 cos j3 + 2B 2 coskq0 + 2B 3 cos r_

+ 4C 1 cos j 0 cos kq0 + 4C 3 cos j 0 cos r_b + 4C 5 cos kq0 cos re

+ 8D 1 cos j 0 cos kq0 cos r_b

77 77 77

69=--;N1 _=_2; ¢=_33 ; j =0,..., N1-1; k=0,...,N2-1; r=0,...,N3-1

(268)

The eigenvectors are the columns of the matrix TN2 ® TN3 ® TN1, with TNi given

by eq. (65).

2. Circulants

(i) Simple Asymmetric

It is clear from the previous treatment that general results can be

written down for arbitrary three-dimensional circulants, the elements and sub-

elements of which are also arbitrary circulants. For the sake of simplicity we

restrict the following discussion to the simpler and more frequently met matrix

T\

\ \
\ \ 0

a-- \ \ \ (269)
\ \ \

0\ \ \
\ \ \

\
\ \

S/N 
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in which

S =

F _-

H z

\\\ \\ \ 0

o"
\ \

\

\o ,
A\, Bl\ B 1 \

\\ \\ \\ /'

o \\ \\B, /
\ \

_B, B, A/N '

B Ci C2\

\ \ 0

C2, \\ x\

\\ \ \\

0 \\\i\ \ C 1

C I C 2 B2 /

T =

\ K\ L\

\ \\0

\ \ \

\\\\\ \\

0 \ \\ K

\ \
\K L !i/

N 3

G = /B3c4\\\\ \C3\\\\ i\\ C4 1

\ \ \

0 \ \ \\ C3/

F3 C4 B3/N I

Cs \ DI\ D3\

D3\ \\ \\

K ={ \\ \,, \\

\\\\ D:

D1 D3 Cs/
1

; L= D4 D2 1

C6 \ \

D \ \
\ \

\\\ \ \

\ D 4
\ \

\ \\ /N\D4 D2 C6
1

(270)

We assume A to have ordinary symmetry* (in the elements A, B,C,D) and

therefore the transposed block matrices in eq. (269) and eq. (270) are transposed

This means, for instance, thatas ordinary matrices also.

(271)

*The asymmetry in the title of this section refers to the form of A as a block matrix.
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with similar expressions for H,

matrices.

The eigenvalues of A are

and L if these in turn are generalized

)tjk r = A + 2B 1 cos j _ + B2 e ikq_ + Ba e-ikq) + B3 e-ir_b + B3 e-ire + C1 ei(j0+kq))

+ q e -i(j0+kfp) + C 2 e i(kq_'jS) + C 2 e -i(kfp-j0) + C 3 e i(j0+r_b) + E 3 e -i(jS+r_b)

+ C 4 e-i(j0-r_b) + C4 ei(j0-r¢) + C5 ei(kfp+r_b) + C5 e-i(kqg+r_b) +

+ C 6 ei(kq_'r¢) + E 6 e-i(kq)-r¢) + l)l ei(j0+kfp+r_b) + _I e-i(j0+kq)+r_b) +

+ D2 e-i(ja-kq)+r¢)+ D2 ei(jS-kq)+r¢) + D3 ei('jS+kfp+r¢) +D3 ei(j0-kq)-r_b) +

e_

+ D4 ei(j0+kfp-r_ b) + D4 e-i(J 0+kq)-r_b) (272)

where

27T. 27r . _ 27r lNI _ : _ N3

J
j =0,..., NI-1; k=0,..., N2-1; r =0,..., N3-1

(273)

The eigenvalues kjk r in eq. (272) were written under the assumption that

A, B1 , • . • , D4 were matrices. If we assume these to be either diagonal

or symmetric, we obtain the simplified expression

_tjk r = A + 2B l cos j6_ + 2B 2 cos kq0 + 2B 3 cos re +

+ 2C 1 cos (j _9+ kqg) + 2C 2 cos (j _ - kcp) + 2C 3 cos (j 6_+ r_b) +

+ 2C 4 cos (j _- r_b) + 2C 5 cos (kq) + r_) + 2C 6 cos (kq) - r_b) +

+ 2D 1 cos (j 0 +kcp + r_b) + 2D:2 cos (j 6?-kcp + re) + 21}3 cos (j 0-kcp- r_b)

+ 2D4 cos (j_+ k_- r¢)

with 0, qg, _ and j, k, r as ineq. (273).

The eigenvectors will be the columns of the matrix UN2

U's as in eq. (124).

_) UN3 _) UNI , with

(274)
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ii) Alternating Asymmetric

The matrix considered here is of the form

\ 0
S2 \

\ \ \\ \
\

S 2/N2

T
\

\ \

N 2 = 2n 2 (275)

with S, , S2 regularly alternating along the main diagonal of _ and

F G\ F2
\

°,

\o i,,'o
N3 = 2n3 (276)

F 1

/AI

BI

\

= \

0

\B,

B1 B1 \

12\\ 0

\ \

\ \

\ \ \

\ \ B1
\

\ t

BI A2/N
1

F 2 =

/A2 B1 B1\
\ /

B_ A1 \ 0

'\ \N\\, _

O\\\\\_BlJ

B1 B 1 A1/N 1

; NI : 2n I (277)

F1 and F 1 alternate regularly along the main diagonals of $1, S2 and so do

and A2 in F 1 , F2. The matrices T and G are as defined in eq. (270).

We remark that the matrices S 1 , F 1 do not commute with S2, F2 , respectively.

To diagonalize A we put it in the form

S1 -S 2 S 1 -S 2 S 1 -S 2'_h : A0 + diag -_ , _ .... , ]
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in which + 1/2 ( S1 - S2 ) alternate regularly and

S + S 2 _)a°: 2 , 'IF,0...OT cyc.
(279)

The transformation U2 which reduces n 0 to block-diagonal form is given by

U 2 = (UN2 ® IN3) ® IN1 (280)

with UN2

where

and

as in eq. (124). Then we can write

[j_1 hU 2 : diag (h (°), A(1), ., _ (2n2-1)')• . +J

A(k) = _1 (S 1 + 82 ) + T e ikq9 + T e-ikq)
2

k = O, ..., 2n 2 - 1; ¢p : 7r/n 2

(281)

(282)

(283)

with

J1 =I ®1"2 _ (S1 - $2)

A further reduction is provided by the permutation

(284)

with PN2

P2 = (PN 2 ® IN 3) ® IN1 (285)

given in eq. (137) (for n = n 2 ). The result of this permutation is

(U 2 P2)" a U2 P2 = diag (H o, HI ..... H2_ 1) (286)
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in which

A(k, ½(S,":

Now, the matrix 1/2 ( S1 - S2 ) is of the form

k = 0, . . . , n 2 - 1 (287)

(S 1 -S 2) :diag [[F1
F21 F 1 - F2 F 1 - F2

; (288)' 2 '''''

where +_1/2 (F 1 - F2 ) alternate regularly, while the A(_) are all generalized

simple circulants. Therefore is we apply on !_ the transformation V_,

Vl : (Is + UN3) ® IN1 (289)

with UN3 as in eq. (124), we obtain

VII _k Vl ---- diag (A(0k), A_ k), A(0 k÷n2), A(lk+n2)) + J' (290)

in which ^_) contains the first n 3 (generalized) eigenvalues of A(_)

the n3 succeeding ones. The matrix J' is given by

and ^_L)

with

t ----

J:\
0

J:

J_ o
(291)

I
(292)

J'l = In 3 ®2 (F1 - 172)

The similarity transformation V2 = 13 ® P4, with P4 as defined in eq. (237),

brings the matrix in eq. (290) to the form

(V1 V2)-1 Itk VlV 2 = diag (H(°) , H(l))k k
(293)
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where

We apply now the permutation

J; \

, -(k+n 2 )
J1 Ao

(294)

with P2. a

P3

as in eq. (137), on H_ °)

= P2n 3 ® IN 1

and Hk(1) :

(295)

in which

• . K(O) ){, • , kn3-1

/,
(296)

and where

Ak,r% )

K_Ir) = I(FI_F 2) Ak+n2 '

k=0,..., n 2 -1; r =0,..., n3-1

(297)

with

A
pq

1

: _- (F 1 + F2) + H e ipcp + H e -ipcp + G e iq_b

+ G e -iq_b + K e i(pqg+q¢) + K e-i(pCO+q¢)

+ L e i(pq)-q¢) + [, e-i(Pq)-q_) (298)

q) = rr/n 2; V5 = 7r/n3; p = 0, . . . , 2n 2 -

The matrices A are again circulant, whilepq

1 [ A1 - A2 A1 - A2

(Fx - F2 ) = diag \ _________., 2

1; q=0,..., 2ha-1

(299)
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inwhich ± 1/2 (_

the transformation

- h 2 ) alternate regularly. Then if we apply on K(k°) and Kk(lr)

we obtain

U3 = I2 ® U2"l (300)

where

one s.

u;' K(o)u3=di_g (^iZ)^i'r) ^(o) ^(,) ) +W (301)
k+n 2, r+n 3 k+n 2, r+n 3

h(0) contains the n 1pq

Also

first eigenvalues of A m , and A (1)pq the n 1 succeeding

W _____

/
0

,1\

0
1 (302)

W, --I ®_-(_ -_)

The similarity permutation V3 = Inl

the matrix of eq. (301) to the form

® P4 ' with P
4

as in eq. (237), brings

(U 3 V3)-I K(°r ) U 3 V 3 = diag (X(°), Y(k°)) (303)

in which

A(O)

kr

x(:) =
W1

: Yk(O) =

k+n2(1), r+n3 / Wl _k+n2.r+n3/

Applying the permutation P2. I defined in eq. (137), we finally obtain

p-1 X (0) P2n I = diag (_(x,O) o(x,O) . , f_(x,o) )
2n 1 kr Okr ' lkr ' " " nl-lkr

Jp-1 ¥,(°)P2.1_" =diag (_(y,o) _(y,o) . .., _(y.o) )2n I Okr ' lkr ' r- 1 - 1 kr

(304)

(305)
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in which

ft(x, O) =
jkr

Ajk r "_" ,-

I

(At - A2) Ai+nI k+n 2 r+n 3

; A (y'0) :
jkr l 1

Aj+nlkr _(AI - A 2)

I(AI -A ) Ajk+n2r+n3

j = 0, • • • , n 1 - 1 ; k = 0, . .., n 2 - 1 ; r : 0, • • •, n 3 - 1 (306)

and the expressions AS.. coincide with the ones given in eq. (272), if A there is

replaced by 1/2 (A 1 + A2 ).

The same procedure gives for K (1) the matrices
kr

)/ 1,,)
Ajkr+n3 7

_(x,1)= . f_(y,1) = (307)
jkr ' jkr

(A 1 - A 2) Aj+n 1 k+n2r I(A1 - A 2) Ajk+n2r

This is the reduction required. It is simple now to find the eigenvalues if the

matrices A1 ,... , I}4 are diagonal or can be simultaneously diagonalized.
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